Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T12:18:42.808Z Has data issue: false hasContentIssue false

Theory and New Applications of Ex Situ Lift Out

Published online by Cambridge University Press:  16 July 2015

Lucille A. Giannuzzi*
Affiliation:
EXpressLO LLC, 5483 Lee St., Unit 12, Lehigh Acres, FL 33971, USA
Zhiyang Yu
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Denise Yin
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Martin P. Harmer
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Qiang Xu
Affiliation:
DENSsolutions, Delftechpark 26, 2628 XH Delft, The Netherlands
Noel S. Smith
Affiliation:
Oregon Physics, LLC, 19075 NW Tanasbourne Dr., Suite 150, Hillsboro, OR 97124, USA
Lisa Chan
Affiliation:
Tescan USA, Inc., 765 Commonwealth Dr., Suite 101, Warrendale, PA 15086, USA
Jon Hiller
Affiliation:
Tescan USA, Inc., 765 Commonwealth Dr., Suite 101, Warrendale, PA 15086, USA
Dustin Hess
Affiliation:
Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA 16802, USA
Trevor Clark
Affiliation:
Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA 16802, USA
*
*Corresponding author. [email protected]
Get access

Abstract

The ex situ lift out (EXLO) adhesion forces are reviewed and new applications of EXLO for focused ion beam (FIB)-prepared specimens are described. EXLO is used to manipulate electron transparent specimens on microelectromechanical systems carrier devices designed for in situ electron microscope analysis. A new patented grid design without a support film is described for EXLO. This new slotted grid design provides a surface for holding the specimen in place and also allows for post lift out processing. Specimens may be easily manipulated into a backside orientation to reduce FIB curtaining artifacts with this slotted grid. Large EXLO specimens can be manipulated from Xe+ plasma FIB prepared specimens. Finally, applications of EXLO and manipulation of FIB specimens using a vacuum probe lift out method are shown. The vacuum probe provides more control for placing specimens on the new slotted grids and also allows for easy manipulation into a backside configuration.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.W. & Gast, A.P. (1997). Physical Chemistry of Surfaces, 6th ed. New York, NY: Wiley-Interscience.Google Scholar
Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J. & Mick, S.E. (2009). A new MEMS-based system for ultra-high resolution imaging at elevated temperatures. Microsc Res Tech 72, 208215.CrossRefGoogle ScholarPubMed
Bassim, N., Scott, K. & Giannuzzi, L.A. (2014). Recent advances in focused ion beam technology and applications. MRS Bull 39, 317325.CrossRefGoogle Scholar
Brown, K.T. & Flaming, D.G. (Eds.) (1986). Advanced Micropipette Techniques for Cell Physiology. Chichester: John Wiley & Sons Ltd.Google Scholar
Chan, L., Hiller, J.M. & Giannuzzi, L.A. (2014). Ex situ lift out of PFIB prepared site specific specimens. ISTFA, ASM International, 9–13 November, Houston, pp. 283–286.Google Scholar
Chen, G., Huang, X. & Wang, M. (2005). Research on vacuum gripper based on fuzzy control for micromanipulators. J Control Theory Appl 3, 295301.CrossRefGoogle Scholar
Codourey, A., Rodriguez, M. & Pappas, I. (1997). A task-oriented teleoperation system for assembly in the microworld. Proceedings of ICAR’97: International Conference on Advanced Robotics, Monterey, CA, USA, July 7–9.Google Scholar
Delobbe, A., Salord, O., Hrncir, T., David, A., Sudraud, P. & Lopour, F. (2014). High speed TEM sample preparation by Xe FIB. Microsc Microanal 20(Suppl 3), 298299.CrossRefGoogle Scholar
Duchamp, M., Xu, Q. & Dunin-Borkowski, R.E. (2014). Convenient preparation of high-quality specimens for annealing experiments in the transmission electron microscope. Microsc Microanal 20, 16381645.CrossRefGoogle ScholarPubMed
Ferryman, A.C., Fulghum, J.E., Giannuzzi, L.A. & Stevie, F.A. (2002). XPS analysis of FIB-milled Si. Surf Interface Anal 33, 907913.CrossRefGoogle Scholar
Gazda, J., Duarte, J. & Daby-Merrill, F. (2010). Twice flipped – avoiding milling curtains in FIB prepared TEM specimens of nano-electronics devices. Microsc Microanal 12(2), 230231.CrossRefGoogle Scholar
Giannuzzi, L.A. (2012 a). EXpressLO™ for fast and versatile FIB specimen preparation. Microsc Microanal 18(2), 632633.CrossRefGoogle Scholar
Giannuzzi, L.A. (2012 b). Routine backside FIB milling with EXpressLO™. ISTFA, pp. 388–390.CrossRefGoogle Scholar
Giannuzzi, L.A. (2013). Enhancing ex-situ lift out with EXpressLO™. Microsc Microanal 19(2), 906907.CrossRefGoogle Scholar
Giannuzzi, L.A. (2014 a). Method and apparatus for ex-situ lift out specimen preparation. US Patent No. 8,740,209, June 3.Google Scholar
Giannuzzi, L.A. (2014 b). Method for ex-situ lift out specimen preparation. US Patent No. 8,789,826, 11–15 November, Phoenix.Google Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift out for site specific cross-section TEM specimen preparation. Mater Res Soc Symp Proc 480, 1827.CrossRefGoogle Scholar
Giannuzzi, L.A. & Smith, N.S. (2011). TEM specimen preparation with plasma FIB Xe+ Ions. Microsc Microanal 17(2), 646647.CrossRefGoogle Scholar
Giannuzzi, L.A. & Smith, N.S. (2014). Ex situ lift out of PFIB prepared TEM specimens. Microsc Microanal 20(Suppl 3), 340341.CrossRefGoogle Scholar
Giannuzzi, L.A. & Stevie, F.A. (Eds.) (2005). Introduction to Focused Ion Beams: Theory, Techniques and Practice. New York, NY: Springer.CrossRefGoogle Scholar
Harlow, W., Ghassem, H. & Taheri, M.L. (2014). In-situ TEM study of the corrosion behavior of Zry-4. Microsc Microanal 20(Suppl 3), 16021603.CrossRefGoogle Scholar
Herlinger, L.R., Chevacharoenkul, S. & Erwin, D.C. (1996). TEM sample preparation using a focused ion beam and a probe manipulator. 22nd International Symposium for Testing and Failure Analysis, ASM International, 18–22 November, Los Angeles, pp. 199–205.CrossRefGoogle Scholar
Jiruse, J., Hrncir, T., Lopour, F., Zadrazil, M., Delobbe, A. & Salord, O. (2012). Combined plasma FIB-SEM. Microsc Microanal 18(2), 652653.CrossRefGoogle Scholar
Kelley, R.D., Song, K., Van Leer, B., Wall, D. & Kwakman, L. (2013). Xe+ FIB milling and measurement of amorphous silicon damage. Microsc Microanal 19(2), 862863.CrossRefGoogle Scholar
Langford, R.M. & Petford-Long, A.K. (2001). Broad ion beam milling of focused ion beam prepared transmission electron microscopy cross sections for high resolution electron microscopy. J Vac Sci Technol A 19(3), 982985.CrossRefGoogle Scholar
Lee, J.C. & Lee, B.H. (2005). The versatile application for in-situ lift out TEM sample preparation by micromanipulator and nanomotor. ISTFA, 6–10 November, San Jose, pp. 322–326.CrossRefGoogle Scholar
Leite, F.L., Bueno, C.C., Da Róz, A.L., Ziemath, E.C. & Oliveira, O.N. Jr. (2012). Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci 13, 1277312856.CrossRefGoogle ScholarPubMed
Leslie, A.J., Pey, K.L., Sim, K.S., Beh, M.T.F. & Goh, G.P. (1995). TEM sample preparation using FIB: Practical problems and artifacts. 21st International Symposium for Testing and Failure Analysis, ASM International, 5–10 November, Santa Clara, pp. 353–362.Google Scholar
Lue, J.L., Chang, T.F., Chen, J.C. & Wang, T. (2007). A method for precise TEM sample preparation using the FIB ex-situ lift out technique with a modified copper ring in semiconductor devices. AIP Conf Proc 931, 507–511.CrossRefGoogle Scholar
O’Kane, D.F. & Mittal, K.L. (1974). Plasma cleaning of metal surfaces. J Vac Sci Technol 11, 567569.CrossRefGoogle Scholar
Overwijk, M.H.F., van den Heuvel, F.C. & Bulle-Lieuwma, C.W.T. (1993). Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J Vac Sci Technol B 11, 20212024.CrossRefGoogle Scholar
Patterson, R.J., Mayer, D., Weaver, L. & Phaneuf, M.W. (2002). “H-Bar Lift-Out” and “Plan-View Lift-Out”: Robust, re-thinnable FIB-TEM preparation for ex-situ cross-sectional and plan-view FIB specimen preparation. Microsc Microanal 8(2), 566CD567CD.CrossRefGoogle Scholar
Petrovic, D., Popovic, G., Chatzitheodoridis, E., Del Medico, O., Almansa, A., Sümecz, F., Brenner, W. & Detter, H. (2002). Gripping tools for handling and assembly of microcomponents. 23rd International Conference on Microelectronics, IEEE, 12–15 May, Yugoslavia, pp. 247–250.CrossRefGoogle Scholar
Prasad, S.V., Michael, J.R. & Christenson, T.R. (2003). EBSD studies on wear-induced subsurface regions in LIGA nickel. Scripta Mater 48, 255260.CrossRefGoogle Scholar
Prasad, S.V., Scharf, T.W., Kotula, P.G., Michael, J.R. & Christenson, T.R. (2009). Application of diamond-like nanocomposite tribological coatings on LIGA microsystem parts. J Microelectromech Syst 18, 695704.CrossRefGoogle Scholar
Rajsiri, S. (2002). Redeposition effects on FIB milled surfaces. MS Thesis, University of Central Florida, Orlando.Google Scholar
Rajsiri, S., Kempshall, B.W., Schwarz, S.M. & Giannuzzi, L.A. (2002). FIB damage in silicon: Amorphization or redeposition? Microsc Microanal 8(2), 5051.CrossRefGoogle Scholar
Rossie, B.B., Mills, R.M., Anderson, S.D., Antonell, M. & Stevie, F.A. (2002). Auger analysis of focused ion beam prepared lift out specimens. Microsc Microanal 8(2), 556557.CrossRefGoogle Scholar
Schwarz, S.M., Kempshall, B.W., Giannuzzi, L.A. & McCartney, M.R. (2003). Avoiding the curtaining effect: backside milling by FIB INLO. Micros Microanal 9(2), 116117. doi: 10.1017/S1431927603441032.CrossRefGoogle Scholar
Smith, N.S., Notte, J.A. & Steele, A.V. (2014) Advances in source technology for focused ion beam instruments. MRS Bull 39, 329335.CrossRefGoogle Scholar
Stevie, F.A., Vartuli, C.B., Giannuzzi, L.A., Shofner, T.L., Brown, S.R., Rossie, B., Hillion, F., Mills, R.H., Antonell, M., Irwin, R.B. & Purcell, B.M. (2001). Application of focused ion beam lift out specimen preparation to TEM, SEM, STEM, AES and SIMS analysis. Surf Interface Anal 31, 345351.CrossRefGoogle Scholar
Tesch, P., Smith, N., Martin, N. & Kinion, D. (2008). High current focused ion beam instrument for destructive physical analysis applications. ISTFA, 2–6 November, Portland, pp. 7–13.CrossRefGoogle Scholar
Young, N.P., van Huis, M.A., Zandbergen, H.W., Xu, H. & Kirkland, A.I. (2010). Transformations of gold nanoparticles investigated using variable temperature high resolution transmission electron microscopy. Ultramicroscopy 110, 506516.CrossRefGoogle ScholarPubMed
Zesch, W., Brunner, M. & Weber, A. (1997). Vacuum tool for handling microobjects with a nanorobot. IEEE Int Conf Robot Autom 2, 17611766.Google Scholar