Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-31T23:34:26.589Z Has data issue: false hasContentIssue false

TEM Characterization of As-Deposited and Annealed Ni/Al Multilayer Thin Film

Published online by Cambridge University Press:  01 October 2010

S. Simões*
Affiliation:
CEMUC, Department of Metallurgical and Materials Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
F. Viana
Affiliation:
CEMUC, Department of Metallurgical and Materials Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
A.S. Ramos
Affiliation:
CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra, Portugal
M.T. Vieira
Affiliation:
CEMUC, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra, Portugal
M.F. Vieira
Affiliation:
CEMUC, Department of Metallurgical and Materials Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Reactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.

Type
Special Section from Portugal Meeting
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barmak, K., Michaelsen, C. & Lucadamo, G. (1997). Reactive phase formation in sputter-deposited Ni/Al multilayer thin films. J Mater Res 12, 133146.CrossRefGoogle Scholar
Bassani, M.H.S., Perepezko, J.H., Edelstein, A.S. & Everett, R.K. (1997). Initial phase evolution during interdiffusion reactions. Scr Mater 37, 227232.CrossRefGoogle Scholar
Blobaum, K.J., Van Heerden, D., Gavens, A.J. & Weihs, T.P. (2003). Al/Ni formation reactions: Characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater 51, 38713887.CrossRefGoogle Scholar
Edelstein, A.S., Everett, R.K., Richardson, G.Y., Qadri, S.B., Altman, E.I., Foley, J.C. & Perepezko, J.H. (1994). Intermetallic phase formation during annealing of AI/Ni multilayers. J Appl Phys 76, 78507859.CrossRefGoogle Scholar
Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E. & Weihs, T.P. (2000). Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys 87, 12551263.CrossRefGoogle Scholar
Hu, R. & Nash, P. (2005). The enthalpy of formation of NiAl. J Mater Sci 40, 10671069.CrossRefGoogle Scholar
Lee, S.-G., Kim, S.-P., Lee, K.-R. & Chung, Y.-C. (2005). Atomic-level investigation of interface structure in Ni-Al multilayer system: Molecular dynamics simulation. J Magn Magn Mater 286, 394398.CrossRefGoogle Scholar
Le Guen, K., Gamblin, G., Jonnard, P., Salou, M., Youssef, J.B., Rioual, S. & Rouvellou, B. (2009). Spectroscopic study of interfaces in Al/Ni periodic multilayers. Eur Phys J-Appl Phys 45, 20502.CrossRefGoogle Scholar
Ma, E., Nicolet, M.A. & Nathan, M. (1989). NiAl3 formation in Al/Ni thin-film bilayers with and without contamination. J Appl Phys 65, 27032710.CrossRefGoogle Scholar
Ma, E., Thompson, C.V. & Clevenger, L.A. (1991). Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation. J Appl Phys 69, 22112218.CrossRefGoogle Scholar
Ma, E., Thompson, C.V., Clevenger, L.A. & Tu, K.N. (1990). Self-propagating explosive reactions in Al/Ni multilayer thin film. J Appl Phys 57, 22112218.Google Scholar
Matsuura, K.K. & Kudoh, M. (2001). Joining between NiAl and heat resistant alloys by reactive casting. Adv Eng Mater 3, 311314.3.0.CO;2-N>CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). Preparation and FIB-induced damage. MRS Bull 32, 400407.CrossRefGoogle Scholar
Michaelsen, C., Barmak, K. & Weihs, T.P. (1997). Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J Appl Phys 30, 31673186.Google Scholar
Michaelsen, C., Lucadamo, G. & Barmak, K. (1996). The early stages of solid-state reactions in Ni/Al multilayer films. J Appl Phys 80, 66896698.CrossRefGoogle Scholar
Michel, J.R. (2006). Gallium phase formation in Cu during 30kV Ga+ FIB milling. Microsc Microanal 12(S2), 12481249 (CD-ROM).CrossRefGoogle Scholar
Miura, S., Terada, Y., Suzuki, T., Liu, C.T. & Mishima, Y. (2000). Thermal conductivity of Ni-Al powder compacts for reaction synthesis. Intermetallics 8, 151155.CrossRefGoogle Scholar
Noro, J., Ramos, A.S. & Vieira, M.T. (2008). Intermetallic phase formation in nanometric Ni/Al multilayer thin films. Intermetallics 16, 10551058.CrossRefGoogle Scholar
Qiu, X. & Wang, J. (2007). Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils. Scr Mater 56, 10551058.CrossRefGoogle Scholar
Ramos, A.S., Vieira, M.T., Morgiel, J., Grzonka, J., Simões, S. & Vieira, M.F. (2009). Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films—A comparative study. J Alloy Compd 484, 335340.CrossRefGoogle Scholar
Salou, M., Rioual, S., Youssef, J.B., Dekadjevi, D.T., Pogossian, S.P., Jonnard, P., Le Guen, K., Gamblin, G. & Rouvellou, B. (2008). Inter-diffusion effects in as-deposited Al/Ni polycrystalline multi-layers. Surf Interface Anal 40, 13181321.CrossRefGoogle Scholar
Simões, S., Viana, F., Ramos, A.S., Vieira, M.T. & Vieira, M.F. (2008). Microstructure evolution during Ni/Al multilayer reactions. EMC 2008 14th European Microscopy Congress, Aachen, Germany, September 1–5, 2008, pp. 487–488.CrossRefGoogle Scholar
Simões, S., Viana, F., Ventzke, V., Koçak, M., Ramos, A.S., Vieira, M.T. & Vieira, M.F. (2010). Diffusion bonding of TiAl using Ni/Al multilayers. J Mater Sci 45, 43514357.CrossRefGoogle Scholar
Spolenak, R., Sauter, L. & Eberl, C. (2005). Reversible orientation-biased grain growth in thin metal films induced by a focused ion beam. Scr Mater 53, 12911296.CrossRefGoogle Scholar
Wang, J.J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M. & Weihs, T.P. (2004). Joining of stainless-steel specimens with nanostructured Al/Ni foils. J Appl Phys 95, 248256.CrossRefGoogle Scholar
Zhu, H.X. & Abbaschian, R. (2003). Reactive processing of nickel-aluminide intermetallic compounds. J Mater Sci 38, 38613870.CrossRefGoogle Scholar