Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T18:53:16.793Z Has data issue: false hasContentIssue false

Surface Microanalysis and Chemical Imaging of Early Dentin Remineralization

Published online by Cambridge University Press:  25 October 2013

Manuel Toledano*
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Miguel Angel Cabrerizo Vílchez
Affiliation:
Faculty of Sciences, University of Granada, Applied Physics Section, Campus de Fuentenueva s/n, 18071 Granada, Spain
Miguel Angel Fernández
Affiliation:
Faculty of Sciences, University of Granada, Applied Physics Section, Campus de Fuentenueva s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Faculty of Dentistry, University of Granada, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

This study reports physical and chemical changes that occur at early dentin remineralization stages. Extracted human third molars were sectioned to obtain dentin discs. After polishing the dentin surfaces, three groups were established: (1) untreated dentin (UD), (2) 37% phosphoric acid application for 15 s (partially demineralized dentin—PDD), and (3) 10% phosphoric acid for 12 h at 25° C (totally demineralized dentin—TDD). Five different remineralizing solutions were used: chlorhexidine (CHX), artificial saliva (AS), phosphate solution (PS), ZnCl2, and ZnO. Wettability (contact angle), ζ potential and Raman spectroscopy analysis were determined on dentin surfaces. Demineralization of dentin resulted in a higher contact angle. Wettability decreased after immersion in all solutions. ζ potential analysis showed dissimilar performance ranging from −6.21 mV (TDD + AS) up to 3.02 mV (PDD + PS). Raman analysis showed an increase in mineral components after immersing the dentin specimens, in terms of crystallinity, mineral content, and concentration. This confirmed the optimal incorporation and deposition of mineral on dentin collagen. Organic content reflected scarce changes, except in TDD that appeared partially denatured. Pyridinium, as an expression of cross-linking, appeared in all spectra except in specimens immersed in PS.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baht, G.S., O'Young, J., Borovina, A., Chen, H., Tye, C.E., Karttunen, M., Lajoie, G.A., Hunter, G.K. & Goldberg, H.A. (2010). Phosphorylation of Ser 136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem J 428, 385395.CrossRefGoogle Scholar
Bertassoni, L.E., Habelitz, S., Pugach, M., Soares, P.C., Marshall, S.J. & Marshall, G.W. Jr. (2010). Evaluation of surface structural and mechanical changes following remineralization of dentin. Scanning 32, 312319.CrossRefGoogle ScholarPubMed
Bertassoni, L.E., Habelitz, S., Marshall, S.J. & Marshall, G.W. (2011). Mechanical recovery of dentin following remineralization in vitro—An indentation study. J Biomech 44, 176181.CrossRefGoogle ScholarPubMed
Carrilho, M.R., Carvalho, R.M., Sousa, E.N., Nicolau, J., Breschi, L., Mazzoni, A., Tjäderhane, L., Tay, F.R., Agee, K. & Pashley, D.H. (2010). Substantivity of chlorhexidine to human dentin. Dent Mater 26, 779785.CrossRefGoogle ScholarPubMed
Chun, M.S., Lee, S.Y. & Yang, S.M. (2003). Estimation of zeta potential by electrokinetic analysis of ionic fluid flows through a divergent microchannel. J Colloid Interf Sci 266, 120126.CrossRefGoogle ScholarPubMed
Clarkson, B.H., Feagin, F.F., McCurdy, S.P., Sheetz, J.H. & Speirs, R. (1991). Effects of phosphoprotein moieties on the remineralization of human root caries. Caries Res 25, 166173.Google ScholarPubMed
Cölfen, H. (2010). Biomineralization: A crystal-clear view. Nat Mater 9, 960961.CrossRefGoogle ScholarPubMed
Daood, U., Iqbal, K., Nitisusanta, L.I. & Fawzy, A.S. (2013). Effect of chitosan/riboflavin modification on resin/dentin interface: Spectroscopic and microscopic investigations. J Biomed Mater Res A 101, 18461856.CrossRefGoogle ScholarPubMed
Dey, A., Bomans, P.H., Müller, F.A., Will, J., Frederik, P.M., de With, G. & Sommerdijk, N.A. (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9, 10101014.CrossRefGoogle ScholarPubMed
Erickson, R.L. (1992). Surface interactions of dentin adhesive materials. Oper Dent 5, 8194.Google Scholar
Fawzy, A., Nitisusanta, L., Iqbal, K., Daood, U., Beng, L.T. & Neo, J. (2012). Characterization of riboflavin-modified dentin collagen matrix. J Dent Res 91, 10491054.CrossRefGoogle ScholarPubMed
Gu, L.S., Kim, J., Kim, Y.K., Liu, Y., Dickens, S.H., Pashley, D.H., Ling, J.Q. & Tay, F.R. (2010). A chemical phosphorylation-inspired design for type I collagen biomimetic remineralization. Dent Mater 26, 10771089.CrossRefGoogle ScholarPubMed
Hao, J., Ramachandran, A. & George, A. (2009). Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. J Histochem Cytochem 57, 227237.CrossRefGoogle ScholarPubMed
Hara, A.T., Karlinsey, R.L. & Zero, D.T. (2008). Dentine remineralization by simulated saliva formulations with different Ca and Pi contents. Caries Res 42, 5156.CrossRefGoogle ScholarPubMed
He, G. & George, A. (2004). Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro . J Biol Chem 279, 1164911656.CrossRefGoogle ScholarPubMed
Heinz, U., Hemmingsen, L., Kiefer, M. & Adolph, H.W. (2009). Structural adaptability of zinc binding sites: Different structures in partially, fully, and heavy-metal loaded states. Chemistry 27, 73507358. [Published erratum in Chemistry 2009;15, 8664.]CrossRefGoogle Scholar
Ito, S., Iijima, M., Motai, F., Mizoguchi, I. & Saito, T. (2012). Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads. J Biomed Mater Res A 100, 27602765.CrossRefGoogle ScholarPubMed
Kawasaki, K., Ruben, J., Stokroos, I., Takagi, O. & Arends, J. (1999). The remineralization of EDTA-treated human dentine. Caries Res 4, 275280.CrossRefGoogle Scholar
Kim, D.S., Kim, J., Choi, K.K. & Kim, S.Y. (2011). The influence of chlorhexidine on the remineralization of demineralized dentine. J Dent 39, 855862.CrossRefGoogle ScholarPubMed
Kim, J., Uchiyama, T., Carrilho, M., Agee, K.A., Mazzoni, A., Breschi, L., Carvalho, R.M., Tjäderhane, L., Looney, S., Wimmer, C., Tezvergil-Mutluay, A., Tay, F.R. & Pashley, D.H. (2010). Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater 26, 771778.CrossRefGoogle ScholarPubMed
Lamparter, S., Slight, S.H. & Weber, K.T. (2002). Doxycycline and tissue repair in rats. J Lab Clin Med 139, 295302.CrossRefGoogle ScholarPubMed
LeGeros, R.Z., Bleiwas, C.B., Retino, M. & LeGeros, J.P. (1999). Zinc effect on the in vitro formation of calcium phosphates: Relevance to clinical inhibition of calculus formation. Am J Dent 12, 6570.Google ScholarPubMed
Li, Y., Thula, T.T., Jee, S., Perkins, S.L., Aparicio, C., Douglas, E.P. & Gower, L.B. (2012). Biomimetic mineralization of woven bone-like nanocomposites: Role of collagen cross-links. Biomacromolecules 13, 4959.CrossRefGoogle ScholarPubMed
Linde, A., Lussi, A. & Crenshaw, M.A. (1989). Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44, 286295.CrossRefGoogle ScholarPubMed
Liu, Y., Mai, S., Li, N., Yiu, C.K., Mao, J., Pashley, D.H. & Tay, F.R. (2011). Differences between top–down and bottom–up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomaterialia 7, 17421751.CrossRefGoogle ScholarPubMed
Lussi, A. & Linde, A. (1993). Mineral induction in vivo by dentine proteins. Caries Res 27, 241248.CrossRefGoogle ScholarPubMed
Marshall, G.W. Jr., Inai, N., Wu-Magidi, I.C., Balooch, M., Kinney, J.H., Tagami, J. & Marshall, S.J. (1997). Dentin demineralization: Effects of dentin depth, pH and different acids. Dent Mater 13, 338343.CrossRefGoogle ScholarPubMed
McCall, K.A., Huang, C. & Fierke, C.A. (2000). Function and mechanism of zinc metalloenzymes. J Nutr 130, 1437S1446S.CrossRefGoogle ScholarPubMed
Mohammadi, Z. & Abbott, P.V. (2009). The properties and applications of chlorhexidine in endodontics. Int Endod J 42, 288302.CrossRefGoogle Scholar
Montes Ruiz-Cabello, F.J., Rodríguez-Valverde, M.A., Marmur, A. & Cabrerizo-Vílchez, M.A. (2011). Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: A numerical study. Langmuir 27, 96389643.CrossRefGoogle ScholarPubMed
Nations, S.P., Boyer, P.J., Love, L.A., Burritt, M.F., Butz, J.A., Wolfe, G.I., Hynan, L.S., Reisch, J. & Trivedi, J.R. (2008). Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology 71, 639643.CrossRefGoogle ScholarPubMed
Nicholson, R. (2002). The Chemistry of Medical and Dental Materials, p. 92. Cambridge, UK: Royal Society of Chemistry.CrossRefGoogle Scholar
Nudelman, F., Pieterse, K., George, A., Bomans, P.H., Friedrich, H., Brylka, L.J., Hilbers, P.A., de With, G. & Sommerdijk, N.A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9, 10041009.CrossRefGoogle ScholarPubMed
Osorio, R., Yamauti, M., Osorio, E., Román, J.S. & Toledano, M. (2011a). Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur J Oral Sci 119, 401410.CrossRefGoogle ScholarPubMed
Osorio, R., Yamauti, M., Osorio, E., Ruiz-Requena, M.E., Pashley, D., Tay, F. & Toledano, M. (2011b). Effect of dentin etching and chlorhexidine application on metalloproteinase-mediated collagen degradation. Eur J Oral Sci 119, 7985.CrossRefGoogle ScholarPubMed
Osorio, R., Yamauti, M., Osorio, E., Ruiz-Requena, M.E., Pashley, D.H., Tay, F.R. & Toledano, M. (2011c). Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 39, 148153.CrossRefGoogle ScholarPubMed
Panighi, M. & G'Sell, C. (1992). Influence of calcium concentration on the dentin wettability by an adhesive. J Biomed Mater Res 26, 10811089.CrossRefGoogle ScholarPubMed
Pascon, F.M., Kantovitz, K.R., Soares, L.E., Santo, A.M., Martin, A.A. & Puppin-Rontani, R.M. (2012). Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry, and scanning electron microscopy study. J Biomed Opt 17, 075008. CrossRefGoogle ScholarPubMed
Rosenberg, K., Olsson, H., Mörgelin, M. & Heinegård, D. (1998). Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273, 2039720403.CrossRefGoogle ScholarPubMed
Sadat-Shojai, M., Atai, M., Nodehi, A. & Khanlar, L.N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater 26, 471482.CrossRefGoogle ScholarPubMed
Saito, T., Yamauchi, M. & Crenshaw, M.A. (1998). Apatite induction by insoluble dentin collagen. J Bone Miner Res 13, 265270.CrossRefGoogle ScholarPubMed
Sakharov, D.V. & Lim, C. (2005). Zn protein simulations including charge transfer and local polarization effects. J Am Chem Soc 127, 49214929.CrossRefGoogle ScholarPubMed
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L. & Thomopoulos, S. (2012). Mineral distributions at the developing tendon enthesis. PLoS One 7, e48630. CrossRefGoogle ScholarPubMed
Seah, R.K.H., Garland, M., Loo, J.S.C. & Widjaja, E. (2009). Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass. Anal Chem 81, 14421449.CrossRefGoogle ScholarPubMed
Silver, F.H. & Landis, W.J. (2011). Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect Tissue Res 52, 242254.CrossRefGoogle Scholar
Tallant, C., Marrero, A. & Gomis-Rüth, F.X. (2010). Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim Biophys Acta 1803, 2028.CrossRefGoogle ScholarPubMed
Tezvergil-Mutluay, A., Agee, K., Hoshikac, T., Carrilho, M., Breschi, L., Tjäderhane, L., Nishitani, Y., Carvalho, R.M., Looney, S., Tay, F.R. & Pashley, D.H. (2010). The requirement of zinc and calcium ions for functional MMP activity in demineralized dentin matrices. Dent Mater 26, 10591067.CrossRefGoogle ScholarPubMed
Toledano, M., Osorio, E., Aguilera, F.S, Cabrerizo-Vilchez, M.A. & Osorio, R. (2012a). Surface analysis of conditioned dentin and resin-dentin bond strength. J Adhes Sci Technol 26, 2740.CrossRefGoogle Scholar
Toledano, M., Osorio, R., de Leonardi, G., Rosales-Leal, J.I., Ceballos, L. & Cabrerizo-Vílchez, M.A. (2001). Influence of self-etching primer on the resin adhesion to enamel and dentin. Am J Dent 14, 205210.Google ScholarPubMed
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentine interface. Dent Mater 29, 142152.CrossRefGoogle Scholar
Toledano, M., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2012b). A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 40, 756765.CrossRefGoogle ScholarPubMed
Veis, A. & Dorvee, J.R. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcif Tissue Int 93, 307315.CrossRefGoogle ScholarPubMed
Wallwork, M.L., Kirkham, J., Chen, H., Chang, S.X., Robinson, C., Smith, D.A. & Clarkson, B.H. (2002). Binding of dentin noncollagenous matrix proteins to biological mineral crystals: An atomic force microscopy study. Calcif Tissue Int 71, 249255.CrossRefGoogle ScholarPubMed
Wang, Y. & Yao, X. (2010). Morphological/chemical imaging of demineralized dentin layer in its natural, wet state. Dent Mater 26, 433442.CrossRefGoogle ScholarPubMed
Wege, H.A., Aguilar, J.A., Rodriguez-Valverde, M.A., Toledano, M., Osorio, R. & Cabrerizo-Vilchez, M.A. (2003). Dynamic contact angle and spreading rate measurements for the characterization of the effect of dentin surface treatments. J Colloid Interf Sci 263, 162169.CrossRefGoogle ScholarPubMed
Xu, C. & Wang, Y. (2011). Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res B Appl Biomater 96, 242248.CrossRefGoogle ScholarPubMed
Xu, Z., Neoh, K.G., Lin, C.C. & Kishen, A. (2011). Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater 98, 150159.CrossRefGoogle ScholarPubMed
Young, A., Smistad, G., Karlsen, J., Rölla, G. & Rykke, M. (1997). Zeta potentials of human enamel and hydroxyapatite as measured by the Coulter DELSA 440. Adv Dent Res 11, 560565.CrossRefGoogle ScholarPubMed
Zerella, J.A., Fouad, A.F. & Spångberg, L.S. (2005). Effectiveness of a calcium hydroxide and chlorhexidine digluconate mixture as disinfectant during retreatment of failed endodontic cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100, 756761.CrossRefGoogle ScholarPubMed