Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-07T01:59:50.311Z Has data issue: true hasContentIssue false

Surface Channeling in Aberration-Corrected Scanning Transmission Electron Microscopy of Nanostructures

Published online by Cambridge University Press:  02 July 2010

Jingyue Liu*
Affiliation:
Center for Nanoscience, Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA
Lawrence F. Allard
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The aberration-corrected scanning transmission electron microscope can provide information on nanostructures with sub-Ångström image resolution. The relatively intuitive interpretation of high-angle annular dark-field (HAADF) imaging technique makes it a popular tool to image a variety of samples and finds broad applications to characterizing nanostructures, especially when combined with electron energy-loss spectroscopy and X-ray energy-dispersive spectroscopy techniques. To quantitatively interpret HAADF images, however, requires full understanding of the various types of signals that contribute to the HAADF image contrast. We have observed significant intensity enhancement in HAADF images, and large expansion of lattice spacings, of surface atoms of atomically flat ZnO surfaces. The surface-resonance channeling effect, one of the electron-beam channeling phenomena in crystalline nanostructures, was invoked to explain the observed image intensity enhancement. A better understanding of the effect of electron beam channeling along surfaces or interfaces on HAADF image contrast may have implications for quantifying HAADF images and may provide new routes to utilize the channeling phenomenon to study surface structures with sub-Ångström spatial resolution.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe: Part I. Ultramicroscopy 96, 4763.CrossRefGoogle ScholarPubMed
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Ångström resolution using aberration corrected electron optics. Nature 418, 617620.CrossRefGoogle ScholarPubMed
Blom, D.A., Allard, L.F., Mishina, S. & O'Keefe, M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.CrossRefGoogle ScholarPubMed
Cowley, J.M. (1989a). Observations of surface-channeling phenomena with a STEM instrument. Ultramicroscopy 27, 319328.CrossRefGoogle Scholar
Cowley, J.M. (1989b). Surface channeling effects in electron holograms. Ultramicroscopy 31, 223232.CrossRefGoogle Scholar
Cowley, J.M. & Huang, Y. (1992). De-channelling contrast in annular dark-field STEM. Ultramicroscopy 40, 171180.CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.CrossRefGoogle ScholarPubMed
Grillo, V. (2009). The effect of surface strain relaxation on HAADF imaging. Ultramicroscopy 109, 14531464.CrossRefGoogle ScholarPubMed
Grillo, V., Carlino, E. & Glas, F. (2008). Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys Rev B 77, 054103/1054103/6.CrossRefGoogle Scholar
Haruta, M., Kurata, H., Komatsu, H., Shimakawa, Y. & Isoda, S. (2009). Effects of electron channeling in HAADF-STEM intensity in La2CuSnO6. Ultramicroscopy 109, 361367.CrossRefGoogle ScholarPubMed
Herrera, M., Ramasse, Q.M., Morgan, D.G., Gonzalez, D., Pizarro, J., Yáñez, A., Galindo, P., Garcia, R., Du, M.-H., Zhang, S.B., Hopkinson, M. & Browning, N.D. (2009). Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of GaAs. Phys Rev B 80, 125211/1125211/10.CrossRefGoogle Scholar
Hillyard, S. & Silcox, J. (1995). Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 617.CrossRefGoogle Scholar
Jesson, D.E. & Pennycook, S.J. (1993). Incoherent imaging of thin specimens using coherently scattered electrons. Proc R Soc Lond A 441, 261281.Google Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, P., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.CrossRefGoogle ScholarPubMed
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 16531658.CrossRefGoogle ScholarPubMed
Lehmpfuhl, G. & Dowell, W.C.T. (1986). Convergent-beam reflection high-energy electron diffraction (RHEED) observations from an Si(111) surface. Acta Crystallogr A42, 569577.CrossRefGoogle Scholar
Liu, J. (2005). Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J Electron Microsc 54, 251278.Google Scholar
Liu, J. & Cowley, J.M. (1992). Imaging dislocations with annular dark-field detector. In Proceedings of the 50th Annual Meeting of the Electron Microscopy Society of America, Bailey, G.W., Bentley, J. & Small, J.A. (Eds.), pp. 12241225. San Francisco, CA: San Francisco Press, Inc.Google Scholar
Liu, J. & Cowley, J.M. (1993). Scanning reflection electron microscopy and associated techniques for surface studies. Ultramicroscopy 48, 381416.CrossRefGoogle Scholar
Maccagnano-Zacher, S.E., Mkhoyan, K.A., Kirkland, E.J. & Silcox, J. (2008). Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108, 718726.CrossRefGoogle ScholarPubMed
Mkhoyan, K.A., Maccagnano-Zacher, S.E., Kirkland, E.J. & Silcox, J. (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.CrossRefGoogle ScholarPubMed
Muller, D.A., Fitting-Kourkoutis, L., Murfitt, M.F., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.CrossRefGoogle ScholarPubMed
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-Ångström imaging of a crystal lattice. Science 305, 17411742.CrossRefGoogle ScholarPubMed
Pan, Z.W., Dai, Z.R. & Wang, Z.L. (2001). Nanobelts of semiconducting oxides. Science 291, 19471949.CrossRefGoogle ScholarPubMed
Pennycook, S. J. & Jesson, D. E. (1990). High-resolution incoherent imaging of crystals. Phys Rev Lett 64, 938941.CrossRefGoogle ScholarPubMed
Pennycook, S.J., Varela, M., Lupini, A.R., Oxley, M.P. & Chisholm, M.F. (2009). Atomic-resolution spectroscopic imaging: Past, present and future. J Electron Microsc 58, 8797.CrossRefGoogle ScholarPubMed
Perovic, D.D., Rossouw, C.J. & Howie, A. (1993). Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 52, 353359.CrossRefGoogle Scholar
Rossouw, C.J., Allen, L.J., Findlay, S.D. & Oxley, M.P. (2003). Channeling effects in atomic resolution STEM. Ultramicroscopy 96, 299312.CrossRefGoogle ScholarPubMed
Sawada, H., Hosokawa, F., Kaneyama, T., Ishizawa, T., Terao, M., Kawazoe, M., Sannomiya, T., Tomita, T., Kondo, Y., Tanaka, T., Oshima, Y., Tanishiro, Y., Yamamoto, N. & Takayanagi, K. (2007). Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn J Appl Phys 46, L568L570.CrossRefGoogle Scholar
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y. & Takayanagi, K. (2009). STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J Electron Microsc 58, 357361.CrossRefGoogle ScholarPubMed
Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A., Chisholm, M.F., Shibata, N., Abe, E. & Pennycook, S.J. (2005). Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu Rev Mater Res 35, 539569.CrossRefGoogle Scholar
Wang, Z.L. & Cowley, J.M. (1989). Simulating high-angle annular dark field (ADF) STEM images including inelastic thermal diffuse scattering. Ultramicroscopy 31, 437454.CrossRefGoogle Scholar
Wang, Z.L., Liu, J., Lu, P. & Cowley, J.M. (1989). Electron resonance reflection from perfect crystal surfaces and surface with steps. Ultramicroscopy 27, 101112.CrossRefGoogle Scholar
Watanabe, M., Ackland, D.W., Burrows, A., Kiely, C.J., Williams, D.B., Krivanek, O.L., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2006). Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12, 515526.CrossRefGoogle ScholarPubMed
Wu, X., Robertson, M.D., Gupta, J.A. & Baribeau, J.-M. (2008). Strain contrast of GaNyAs1−y (y = 0.029 and 0.045) epitaxial layers on (100) GaAs substrates in annular dark field images. J Phys: Condens Matter 20, 075215/1075215/7.Google Scholar
Yu, Z., Muller, D.A. & Silcox, J. (2004). Study of strain fields at a-Si/c-Si interface. J Appl Phys 95, 33623371.CrossRefGoogle Scholar
Yu, Z., Muller, D.A. & Silcox, J. (2008). Effects of specimen tilt in ADF-STEM imaging of a-Si/c-Si interfaces. Ultramicroscopy 108, 494501.CrossRefGoogle ScholarPubMed