Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T22:22:30.908Z Has data issue: false hasContentIssue false

Sub-Ångstrom Atomic-Resolution Imaging from Heavy Atoms to Light Atoms

Published online by Cambridge University Press:  22 January 2004

Michael A. O'Keefe
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Yang Shao-Horn
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4 Å resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Ångstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen, and nitrogen) that are present in many complex structures. By using sub-Ångstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Ångstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allpress, J.G. (1969). The direct observation of structural features and defects in complex oxides by two-dimensional lattice imaging. Mater Res Bull 310, 707712.CrossRefGoogle Scholar
Allpress, J.G., Hewat, E.A., Moodie, A.F., & Sanders, J.V. (1972). n-beam lattice images, I. Experimental and computed images from W4Nb26O77. Acta Cryst A 28, 528535.Google Scholar
Anstis, G.R., Lynch, D.F., Moodie, A.F., & O'Keefe, M.A. (1973). n-beam lattice images, III. Upper limits of ionicity in W4Nb26O77. Acta Cryst A 29, 138147.Google Scholar
Anstis, G.R. & O'Keefe, M.A. (1976). Resolution-limiting effects in electron microscope images. In Proceedings of the 34th Annual Electron Microscopy Society of America Meeting, Bailey, G.W. (Ed.), pp. 480481. Claitor's Publishing Division.
Bakker, H., Bleeker, A., & Mul, P. (1996). Design and performance of an ultra-high-resolution 300 kV microscope. Ultramicroscopy 64, 1734.CrossRefGoogle Scholar
Coene, W.M.J., Thust, A., Op de Beeck, M., & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.CrossRefGoogle Scholar
Cook, J.M., O'Keefe, M.A., Smith, D.J., & Stobbs, W.M. (1983). The high resolution electron microscopy of stacking defects in Cu-Zn-Al shape-memory alloy. J Microsc 129, 295306.CrossRefGoogle Scholar
Cowley, J.M. & Iijima, S. (1972). Electron microscope image contrast for thin crystals. Z Naturforsch 27a, 445451.Google Scholar
Cowley, J.M. & Moodie, A.F. (1957a). Fourier images. I. The point source. Proc Phys Soc B 70, 486496.Google Scholar
Cowley, J.M. & Moodie, A.F. (1957b). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst 10, 609623.Google Scholar
den Dekker, A.J. & van den Bos, A. (1997). Resolution: A survey. J Opt Soc Am A 14, 547557.CrossRefGoogle Scholar
Downing, K.H., Meisheng, H., Wenk, H.-R., & O'Keefe, M.A. (1990). Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy. Nature 348, 525528.Google Scholar
Epicier, T., O'Keefe, M.A., & Thomas, G. (1990). Atomic imaging of 3:2 mullite. Acta Cryst A 46, 948962.Google Scholar
Frank, J. (1973). The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519536.Google Scholar
Haider, M., Braunshausen, G., & Schwan, E. (1995). Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector. Optik 99, 167179.Google Scholar
Horiuchi, S., Matsui, Y., Kitami, Y., Yokoyama, M., Suehara, S., Wu, X.J., Matsui, I., & Katsuta, T. (1991). Ultra-high-resolution HVEM (H-1500) newly constructed at NIRIM. II. Application to materials. Ultramicroscopy 39, 231237.Google Scholar
Iijima, S. (1971). High resolution electron microscopy of crystal lattice of titanium-niobium oxide. J Appl Phys 42, 58915893.Google Scholar
Iijima, S. & O'Keefe, M.A. (1979). Determination of defocus values using ‘Fourier images’ for high resolution electron microscopy. J Microsc 117, 347354.CrossRefGoogle Scholar
Jia, C.L., Lentzen, M., & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jia, C.L. & Thust, A. (1999). Investigation of atomic displacements at a Σ3 {111} twin boundary in BaTiO3 by means of phase-retrieval electron microscopy. Phys Rev Lett 82, 50525055.Google Scholar
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A., & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen at sub-Ångstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.CrossRefGoogle Scholar
Lynch, D.F., Moodie, A.F., & O'Keefe, M.A. (1975). n-beam lattice images, V. Use of the charge-density approximation in the interpretation of lattice images. Acta Cryst A 31, 300307.Google Scholar
Lynch, D.F. & O'Keefe, M.A. (1972). n-beam lattice images, II. Methods of calculation. Acta Cryst A 28, 536548.Google Scholar
Malm, J.-O. & O'Keefe, M.A. (1993). Using convergence and spread-of-focus parameters to model spatial and temporal coherence in HRTEM image simulations. In 51st Annual Proceedings of the Microscopy Society of America, Bailey, G.W. & Rider, C.L. (Eds.), pp. 974975. San Francisco Press Inc.
O'Keefe, M.A. (1973). n-beam lattice images, IV. Computed two-dimensional images. Acta Cryst A 29, 389401.Google Scholar
O'Keefe, M.A. (1979). Resolution-damping functions in non-linear images. In Proceedings of the 37th Annual Electron Microscopy Society of America Meeting, Bailey, G.W. (Ed.), pp. 556557. Claitor's Publishing Division.
O'Keefe, M.A. (1993). Using coherent illumination to extend HRTEM resolution: Why we need a FEG-TEM for HREM. In LBL Symposium on Microstructures of Materials, Krishnan, K. (Eds.), pp. 121126. Berkeley: San Francisco Press.
O'Keefe, M.A. (1998). Theoretical and practical aspects in computer simulation of high resolution transmission electron microscope images. In Proceedings of XIVth International Congress for Electron Microscopy, Benavides Calderón, H.A. & Yacamán, M.J. (Eds.), vol. 1s, pp. 573574. Institute of Physics Publishing.
O'Keefe, M.A. (2001). Alpha-null defocus: An optimum defocus condition with relevance for focal-series reconstruction. Microsc Microanal 7, 916917.Google Scholar
O'Keefe, M.A., Buseck, P.R., & Iijima, S. (1978). Computed crystal structure images for high resolution electron microscopy. Nature 274, 322324.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielow-ski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M., & Thust, A. (2001a). Sub-Ångstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215241.Google Scholar
O'Keefe, M.A., Nelson, E.C., Wang, Y.C., & Thust, A. (2001b). Sub-Ångstrom resolution of atomistic structures below 0.8Å. Phil Mag B 81, 18611878.Google Scholar
O'Keefe, M.A. & Radmilovic, V. (1993). The effects of small crystal tilts on dynamical scattering: Why simulated images are thinner than experimental ones. In 51st Annual Proceedings of the Microscopy Society of America, Bailey, G.W. & Rieder, C.L. (Eds.), pp. 980981. San Francisco Press Inc.
O'Keefe, M.A. & Sanders, J.V. (1975). n-beam lattice images, VI. Degradation of image resolution by a combination of incident-beam divergence and spherical aberration. Acta Cryst A 31, 307310.Google Scholar
O'Keefe, M.A., Tiemeijer, P.C., & Sidorov, M.V. (2002). Estimation of the electron beam energy spread for TEM information limit. Microsc Microanal 8, 480481.Google Scholar
Rayleigh, Lord (a.k.a. Strutt, J.W.). (1874). On the manufacture and theory of diffraction gratings. Phil Mag 47, 8193.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Schiske, P. (1973). In Image Processing and Computer-Aided Design, Hawkes, P.W. (Ed.), pp. 8290. London: Academic Press.
Shao-Horn, Y., Croguennec, L., & Delmas, C., Nelson, E.C., O'Keefe, M.A. (2003). Atomic resolution of lithium ions in LiCoO2 battery material. Nat Mater 2, 464467.Google Scholar
Shao-Horn, Y., O'Keefe, M.A., Nelson, E.C., Croguennec, L., & Delmas, C. (2002). Atomic resolution of lithium ions in LiCoO2. Fall Meeting of the Materials Research Society, Symposium G. Available online at http://www.mrs.org/meetings/fall2002/program/symposia/abstract_book/AbstractBookG.pdf.
Thust, A., Coene, W.M.J., Op de Beeck, M., & Van Dyck, D. (1996). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.Google Scholar
Van Dyck, D. & Op de Beeck, M. (1990). New direct methods for phase and structure retrieval in HREM. In Proceedings of the 12th International Congress on Electron Microscopy, Peachy, L.D. & Williams, D.B. (Eds.), pp. 2627. San Francisco Press Inc.
Wade, R.H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49, 8192.Google Scholar
Wang, Y.C., Fitzgerald, A., Nelson, E.C., Song, C., O'Keefe, M.A., & Kisielowski, C. (1999). Effect of correction of the 3-fold astigmatism on HREM lattice imaging with information below 100 pm. Microsc Microanal 5, 822823.Google Scholar
Wenk, H.-R., Downing, K.H., Meisheng, H., & O'Keefe, M.A. (1992). 3d structure determination from electron-microscope images: Electron crystallography of staurolite. Acta Cryst A 48, 700716.Google Scholar