Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T19:50:57.008Z Has data issue: false hasContentIssue false

Study on Evolution of Micropipes from Hexagonal Voids in 4H-SiC Crystals by Cathodoluminescence Imaging

Published online by Cambridge University Press:  29 January 2021

Aman Arora
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Ankit Patel
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Brajesh S. Yadav*
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Anshu Goyal
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Om P. Thakur
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Arun K. Garg
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
Ramachandran Raman
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi110054, India
*
*Author for correspondence: Brajesh S. Yadav, E-mail: [email protected]
Get access

Abstract

This paper presents an investigation on micropipe evolution from hexagonal voids in physical vapor transport-grown 4H-SiC single crystals using the cathodoluminescence (CL) imaging technique. Complementary techniques optical microscopy, scanning electron microscopy, and energy-dispersive spectroscopy (EDS) are also used to understand the formation mechanism of hexagonal voids along with the origin of pipes from these voids. The ability of CL to image variations along the depth of the sample provides new insights on how micropipes are attached to hexagonal voids that lie deep within the bulk single crystals. CL imaging confirms that multiple micropipes can originate from a single hexagonal void. EDS mapping shows that the inside of the micropipe walls exhibits higher levels of carbon. Investigation of the seed region by optical imaging shows that improper fixing of the seed to the crucible lid is the root cause for the formation of hexagonal voids that subsequently lead to micropipe formation.

Type
Micrographia
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baliga, BJ (1998). High voltage silicon carbide devices. In Wide Bandgap Semiconductors for High Power, High Frequency, vol. 512. Denbaars, S, Palmour, J, Shur, MS & Spencer, M (Eds.), pp. 7788. Materials Research Society Symposium Proceedings. doi:10.1557/PROC-512-77Google Scholar
Boggs, S & Krinsley, D (2006). Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press. doi:10.1017/CBO9780511535475CrossRefGoogle Scholar
Chow, TP & Ghezzo, M (1996). SiC power devices. In III-Nitride, SiC, and Diamond Materials for Electronic, vol. 423. Brandt, CD, Gaskill, DK & Nemanich, RJ (Eds.), pp. 921. Materials Research Society Symposium Proceedings. doi:10.1557/proc-423-9Google Scholar
Cottom, JP (2017). The characterisation of performance limiting defects in 4H-SiC devices using density functional theory. Ph.D Dissertation. Department of Chemistry, University College London.Google Scholar
Dhanaraj, G, Raghothamachar, B & Dudley, M (2010). Growth and characterization of silicon carbide crystals. In Springer Handbook of Crystal Growth, Springer Handbooks, Dhanaraj, G, Byrappa, K, Prasad, VJ & Dudley, M (Eds.), pp. 797820. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-74761-1_23CrossRefGoogle Scholar
Díaz-Guerra, C & Piqueras, J (2004). Cathodoluminescence microscopy and spectroscopy of n-type 4H-SiC epilayers. Eur Phys J Appl Phys 27, 227230. doi:10.1051/epjap:2004091CrossRefGoogle Scholar
Dudley, M, Huang, XR, Huang, W, Powell, A, Wang, S, Neudeck, P & Skowronski, M (1999). The mechanism of micropipe nucleation at inclusions in silicon carbide. Appl Phys Lett 75(6), 784786. doi:10.1063/1.124512CrossRefGoogle Scholar
Dudley, M, Wang, S, Huang, W, Carter, CH, Tsvetkov, VF & Fazi, C (1995). White beam synchrotron topographic studies of defects in 6H-SiC single crystal. J Phys D 28, A63A68. doi:10.1088/0022-3727/28/4A/012CrossRefGoogle Scholar
Fujimoto, T, Tsuge, H, Katsuno, M, Sato, S, Yashiro, H, Hirano, H & Yano, T (2013). A possible mechanism for hexagonal void movement observed during sublimation growth of SiC single crystals. Mater Sci Forum 740–742, 577580. doi:10.4028/www.scientific.net/MSF.740-742.577CrossRefGoogle Scholar
Hofmann, D, Bickermann, M, Hartung, W & Winnacker, A (2000). Analysis on the formation and elimination of filamentary and planar voids in silicon carbide bulk crystals. Mater Sci Forum 338–342, 445448. doi:10.4028/www.scientific.net/MSF.338-342.445CrossRefGoogle Scholar
Kakanakova-Georgieva, A, Yakimova, R, Henry, A, Linnarsson, MK, Syväjärvi, M & Janzén, E (2002). Cathodoluminescence identification of donor–acceptor related emissions in as-grown 4H–SiC layers. J Appl Phys 91(5), 28902895. doi:10.1063/1.1436293CrossRefGoogle Scholar
Kanaya, K & Okayama, S (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D: Appl Phys 5(1), 4358. doi:10.1088/0022-3727/5/1/308CrossRefGoogle Scholar
Khan, R, Arora, A, Jain, A, Yadav, BS, Lohani, J, Goyal, A, Narang, K, Upadhyaya, G, Singh, VK, Saini, SK, Raman, R, Padmavati, MVG, Tyagi, R, Bag, RK & Riaz, U (2020). Impact of growth conditions on intrinsic carbon doping in GaN layers and its effect on blue and yellow luminescence. J Mater Sci: Mater Electron. doi:10.1007/s10854-020-03993-5Google Scholar
Kuhr, TA, Sanchez, EK & Skowronski, M (2001). Hexagonal voids and the formation of micropipes during SiC sublimation growth. J Appl Phys 89(8), 46254630. doi:10.1063/1.1355716CrossRefGoogle Scholar
Lely, JA (1995). Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen. Ber Dtsch Keram Ges 32, 229236.Google Scholar
Neudeck, PG & Powell, JA (1994). Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett 15, 6365. doi:10.1109/55.285372CrossRefGoogle Scholar
Powell, A, Wang, S & Brandes, G (2000). Growth of low micropipe density SiC wafers. Mater Sci Forum 338–342, 437440. doi:10.4028/www.scientific.net/MSF.338-342.437CrossRefGoogle Scholar
Presser, V & Nickel, KG (2008). Silica on silicon carbide. Crit Rev Solid State Mater Sci 33(1), 199. doi:10.1080/10408430701718914CrossRefGoogle Scholar
Sanchez, EK, Kuhr, T, Heydemann, VD, Snyder, DW, Rohrer, GS & Skowronski, M (2000). Formation of thermal decomposition cavities in physical vapor transport of silicon carbide. J Electr Mater 29(3), 347–335. doi:10.1007/s11664-000-0075-7CrossRefGoogle Scholar
Sasaki, M, Nishio, Y, Nishino, S, Nakashima, S & Harima, H (1998). Defect formation mechanism of bulk SiC. Mater Sci Forum 264–268, 41. doi:10.4028/www.scientific.net/MSF.264-268.41CrossRefGoogle Scholar
Schaffer, WJ, Negley, GH, Irvine, KG & Palmour, JW (1994). Conductivity anisotropy in epitaxial 6H and 4H SiC. In Diamond, and Nitride Wide Bandgap Semi-Conductors, vol. 339. Carter, CH, Gildenblat, Jr. G, Nakamura, S & Memanich, RJ (Eds.), pp. 595600. Pittsburgh: Materials Research Society Symposium Proceedings. doi:10.1557/PROC-339-595Google Scholar
Stein, RA (1993). Formation of macrodefects in SiC. Physica B 185, 211216. doi:10.1016/0921-4526(93)90239-3CrossRefGoogle Scholar
Syväjärvi, M (1999). High growth rate epitaxy of SiC: Growth process and structural quality. PhD Dissertation. Linköping University, Linköping, Sweden.Google Scholar
Tairov, YM & Tsvetkov, VF (1978). Investigation of growth processes of ingots of silicon carbide single crystals. J Cryst Growth 43, 209–202. doi:10.1016/00220248(78)90169-0CrossRefGoogle Scholar
Takanaka, N, Nishino, S & Saraie, J (1996). Sublimation growth of 6H-SiC bulk. In Proceedings of 6th Int Conf SiC Related Materials, Inst Phys Conf Ser, vol. 142. Nakshima, H, Matsunami, S & Harima, Y (Eds.), pp. 4952. Bristol and Philadelphia: Inst. Phys. Pub.Google Scholar
Toth, M & Phillips, MR (1998). Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves. Scanning 20, 425432. doi:10.1002/sca.1998.4950200601CrossRefGoogle Scholar
Weitzel, CE (1998). SiC high frequency devices. Mater Sci Forum 264–268, 907912. doi:10.4028/www.scientific.net/MSF.264-268.907CrossRefGoogle Scholar
Willander, M, Friesel, M, Wahab, Q & Straumal, B (2006). Silicon carbide and diamond for high temperature device applications. J Mater Sci: Mater Electron 17(1), 125. doi:10.1007/s10854-005-5137-4Google Scholar
Xu, X, Hu, X & Chen, X (2019). SiC single crystal growth and substrate processing. In Light-Emitting Diodes. Solid State Lighting Technology and Application Series 4, Li, J & Zhang, GQ (Eds.), pp. 4192. Springer International Publishing AG. doi:10.1007/978-3-319-99211-2_2CrossRefGoogle ScholarPubMed
Yacobi, BG & Holt, DB (1986). Cathodoluminescence scanning electron microscopy of semiconductors. J Appl Phys 59(4), R1R24. doi:10.1063/1.336491CrossRefGoogle Scholar
Zhokhov, АА, Aronin, АS, Yakimov, ЕB & Еmelchenko, (2014). Carbon nanocluster growth inside micropipes during the SiC bulk growth process. Mater Res Express 1(2), 025038. doi:10.1088/2053-1591/1/2/025038CrossRefGoogle Scholar