Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-31T23:20:53.244Z Has data issue: false hasContentIssue false

A Study of Cathodoluminescence and Trace Element Compositional Zoning in Natural Quartz from Volcanic Rocks: Mapping Titanium Content in Quartz

Published online by Cambridge University Press:  20 November 2012

William P. Leeman*
Affiliation:
Department of Earth Science, Rice University, 6100 S. Main St., Houston, TX 77005, USA
Colin M. MacRae
Affiliation:
Microbeam Laboratory, CSIRO Process Science & Engineering, Clayton Laboratories, Gate 1, Normanby Road, Clayton, Victoria 3168, Australia
Nick C. Wilson
Affiliation:
Microbeam Laboratory, CSIRO Process Science & Engineering, Clayton Laboratories, Gate 1, Normanby Road, Clayton, Victoria 3168, Australia
Aaron Torpy
Affiliation:
Microbeam Laboratory, CSIRO Process Science & Engineering, Clayton Laboratories, Gate 1, Normanby Road, Clayton, Victoria 3168, Australia
Cin-Ty A. Lee
Affiliation:
Department of Earth Science, Rice University, 6100 S. Main St., Houston, TX 77005, USA
James J. Student
Affiliation:
Department of Earth and Atmospheric Sciences, Central Michigan University, 314 Brooks Hall, Mount Pleasant, MI 48859, USA
Jay B. Thomas
Affiliation:
Department of Earth & Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA
Edward P. Vicenzi
Affiliation:
Smithsonian Institution, Museum Conservation Inst., 4210 Silver Hill Rd., Suitland, MD 20746, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

This article concerns application of cathodoluminescence (CL) spectroscopy to volcanic quartz and its utility in assessing variation in trace quantities of Ti within individual crystals. CL spectroscopy provides useful details of intragrain compositional variability and structure but generally limited quantitative information on element abundances. Microbeam analysis can provide such information but is time-consuming and costly, particularly if large numbers of analyses are required. To maximize advantages of both approaches, natural and synthetic quartz crystals were studied using high-resolution hyperspectral CL imaging (1.2–5.0 eV range) combined with analysis via laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Spectral intensities can be deconvolved into three principal contributions (1.93, 2.19, and 2.72 eV), for which intensity of the latter peak was found to correlate directly with Ti concentration. Quantitative maps of Ti variation can be produced by calibration of the CL spectral data against relatively few analytical points. Such maps provide useful information concerning intragrain zoning or heterogeneity of Ti contents with the sensitivity of LA-ICPMS analysis and spatial resolution of electron microprobe analysis.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeev, R., Holtz, F., Kuschel, L., Nash, B. & Cathey, H. (2009). Experimental constraints on rhyolite magma genesis, Yellowstone hotspot. Geochim Cosmochim Acta 73(12), A30.Google Scholar
Almeev, R.R., Bolte, T., Nash, B.P., Holtz, F., Erdmann, M. & Cathey, H.E. (2012). High temperature, low H2O silicic magmas of the Yellowstone hotspot: An experimental study, J Petrol 53, 18371866.CrossRefGoogle Scholar
Anderson, J.L. & Smith, D.R. (1995). The effects of temperature and f O2 on the Al-in-hornblende barometer. Am Mineral 80, 549559.CrossRefGoogle Scholar
Andrews, G.D.M., Branney, M.J., Bonnichsen, B. & McCurry, M. (2009). Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: Volcanic stratigraphy, eruption history and basin evolution. Bull Volcanol 70, 269291.CrossRefGoogle Scholar
Bindeman, I.N. & Valley, J.W. (2001). Low-d18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42, 14911517.CrossRefGoogle Scholar
Bonnichsen, B., Leeman, W.P., Honjo, N., McIntosh, W.C. & Godchaux, M.M. (2008). Miocene silicic volcanism in southwestern Idaho: Geochronology, geochemistry, and evolution of the central Snake River Plain. Bull Volcanol 70, 315342.CrossRefGoogle Scholar
Campbell, M.E., Hanson, J.B., Minarik, W.G. & Stix, J. (2009). Thermal history of the Bandelier magmatic system: Evidence for magmatic injection and recharge at 1.61 Ma as revealed by cathodoluminescence and titanium geothermometry. J Geol 117, 469485.CrossRefGoogle Scholar
Cathey, H.E. & Nash, B.P. (2004). The Cougar Point Tuff: Implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45, 2758.CrossRefGoogle Scholar
Cathey, H.E. & Nash, B.P. (2009). Pyroxene thermometry of rhyolite lavas of the Bruneau–Jarbidge eruptive center, Central Snake River Plain. J Volcanol Geotherm Res 188, 173185.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B. & Wark, D.A. (2007). Ti diffusion in quartz. Chem Geol 236, 6574.CrossRefGoogle Scholar
Ellis, B.S. & Wolff, J.A. (2010). Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: The Twin Falls eruptive centre, central Snake River Plain. Lithos 120, 475489.CrossRefGoogle Scholar
Ellis, B.S. & Wolff, J.A. (2012). Complex storage of rhyolite in the central Snake River Plain. J Volcanol Geotherm Res 211212, 111.CrossRefGoogle Scholar
Flem, B., Larsen, R.B., Grimstvedt, A. & Mansfeld, J. (2002). In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182, 237247.CrossRefGoogle Scholar
Gansecki, C.A. (1998). 40Ar/39Ar geochronology and pre-eruptive geochemistry of the Yellowstone Plateau Volcanic Field rhyolites. PhD Dissertation. Stanford, CA: Stanford University. Google Scholar
Ghiorso, M.S. & Gualda, G.A.R. (2011). A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Eos, Trans Am Geophys Union 91, Fall Meeting Abst. V11A-2486. Google Scholar
Ghiorso, M.S. & Gualda, G.A.R. (2012). A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contrib Mineral Petrol doi:10.1007/s00410-012-0792-y.Google Scholar
Girard, G. & Stix, J. (2010). Rapid extraction of discrete magma batches from a large differentiating magma chamber: The Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming. Contrib Mineral Petrol 160, 441465.CrossRefGoogle Scholar
Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. & Bray, C.J. (2004). Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim Cosmochim Acta 68, 37413759.CrossRefGoogle Scholar
Götze, J., Plötze, M. & Habermann, D. (2001). Origin, spectral characteristics and practical applications of the cathodoluminescence of quartz—A review. Mineral Petrol 71, 225250.Google Scholar
Götze, J., Plötze, M. & Trautmann, T. (2005). Structure and luminescence characteristics of quartz from pegmatites. Am Mineral 90, 1321.CrossRefGoogle Scholar
Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V. & Carley, T.L. (2012). Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53, 875890.CrossRefGoogle Scholar
Harrowfield, I.R., MacRae, C. & Wilson, N.C. (1993). Chemical imaging in electron microprobes. In Proceedings of the 27th Annual MAS Meeting 1993, pp. 547548. New York: Microbeam Analysis Society.Google Scholar
Holness, M.B. & Watt, G.R. (2001). Quartz recrystallization and fluid flow during contact metamorphism: A cathodoluminescence study. Geofluids 1, 215228.CrossRefGoogle Scholar
Holtz, F., Johannes, W., Tamic, N. & Behrens, H. (2001). Maximum and minimum water contents of granitic melts generated in the crust: A reevaluation and implications. Lithos 56, 114.CrossRefGoogle Scholar
Honjo, N., Bonnichsen, B., Leeman, W.P. & Stormer, J.C. (1992). Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain. Bull Volcanol 54, 220237.CrossRefGoogle Scholar
Honjo, N. & Leeman, W.P. (1987). Origin of hybrid ferrolatite lavas from the Magic Reservoir eruptive center, Snake River Plain, Idaho. Contrib Mineral Petrol 96, 163177.CrossRefGoogle Scholar
Huang, R. & Audétat, A. (2012). The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochim Cosmochim Acta 84, 7589.CrossRefGoogle Scholar
Johannes, W. & Holtz, F. (1996). Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer Verlag.CrossRefGoogle Scholar
Kohn, M.J. & Northrup, C.J. (2009). Taking mylonites' temperatures. Geology 37, 4750.CrossRefGoogle Scholar
Landtwing, M. & Pettke, T. (2005). Relationships between SEM-cathodoluminescence response and trace element composition of hydrothermal vein quartz. Am Mineral 90, 122131.CrossRefGoogle Scholar
Larsen, R.B., Jacamon, F. & Krontz, A. (2009). Trace element chemistry and textures of quartz during the magmatic-hydrothermal transition of Oslo Rift granites. Mineral Mag 73, 691707.CrossRefGoogle Scholar
Leeman, W.P. (1982). Geology of the Magic Reservoir area, Snake River Plain. Idaho Bur Mines Geol Bull 26, 369376.Google Scholar
Leeman, W.P., Annen, C. & Dufek, J. (2008). Snake River Plain-Yellowstone silicic volcanism: Implications for magma genesis and magma fluxes. Geol Soc London Spec Publ 304, 235259.CrossRefGoogle Scholar
Leeman, W.P. & Lee, C.-T.A. (2008). Taking the temperature of rhyolites from the Yellowstone hotspot track: Evaluation of the Ti-in-Quartz method. Geochim Cosmochim Acta 72(12), A906.Google Scholar
Lehmann, K., Berger, A., Gotte, T., Ramseyer, K. & Wiedenbeck, M. (2009). Growth-related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73, 633643.CrossRefGoogle Scholar
Liu, Y., Anderson, A.T., Wilson, C.J.N., Davis, A.M. & Steele, I.M. (2006). Mixing and differentiation in the Oruanui rhyolite magma, Taupo, New Zealand: Evidence from volatiles and trace elements in melt inclusions. Contrib Mineral Petrol 151, 7187.CrossRefGoogle Scholar
Longerich, H.P., Jackson, S.E. & Gunther, D. (1996). Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11, 899904.CrossRefGoogle Scholar
Luff, B.J. & Townsend, P.D. (1990). Cathodoluminescence of synthetic quartz. J Phys-Condens Mat 2, 80898097.CrossRefGoogle Scholar
MacRae, C.M., Wilson, N.C. & Brugger, J. (2008). Hyperspectral cathodoluminescence microanalysis—Mapping at the part per million level. IUMAS IV Conference, Perth, Australia, February 10–15, 2008. Google Scholar
MacRae, C.M., Wilson, N.C. & Brugger, J. (2009). Quantitative cathodoluminescence mapping with application to a Kalgoorlie Scheelite. Microsc Microanal 15, 222230.CrossRefGoogle ScholarPubMed
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & Otsuki, M. (2005). Hyperspectral mapping—Combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Techniq 67(5), 271277.CrossRefGoogle Scholar
Marshall, D.J. (1988). Cathodoluminescence of Geological Materials. London: Unwin Hyman Ltd. Google Scholar
Mason, R.A. (1987). Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South-Wales, UK. Chem Geol 64, 209224.CrossRefGoogle Scholar
Mason, R., Clouter, M. & Goulding, R. (2005). The luminescence decay-time of Mn2+ activated calcite. Phys Chem Mineral 32, 451459.CrossRefGoogle Scholar
Matthews, N.E., Pyle, D.M., Smith, V.C., Wilson, C.J.N., Huber, C. & Van Hinsberg, V. (2012). Quartz zoning and the pre-eruptive evolution of the ∼340 ka Whakamaru magma systems, New Zealand. Contrib Mineral Petrol 163, 87107.CrossRefGoogle Scholar
Monecke, T., Kempe, U. & Götze, J. (2002). Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planet Sci Lett 202, 709724.CrossRefGoogle Scholar
Morrison, C.A., Lambert, D.D., Morrison, R.J.S., Ahlers, W.W. & Nicholls, I.A. (1995). Laser ablation-inductively coupled plasma-mass spectrometry: An investigation of elemental responses and matrix effects in the analysis of geostandard materials. Chem Geol 119, 1329.CrossRefGoogle Scholar
Müller, A., Herrington, R., Armstrong, R., Seltman, R., Kirwin, D., Stenina, N. & Kronz, A. (2010). Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineral Depos 45, 707727.CrossRefGoogle Scholar
Müller, A., Kronz, A. & Breiter, K. (2002). Trace elements and growth patterns in quartz: A fingerprint of the evolution of the subvolcanic Podlesí Granite System (Krušnéhory Mts., Czech Republic). Bull Czech Geol Surv 77, 135145.Google Scholar
Müller, A., René, M., Behr, H.-J. & Kronz, A. (2003a). Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts., Czech Republic). Mineral Petrol 79, 167191.CrossRefGoogle Scholar
Müller, A., van den Kerkhof, A.M., Behr, H.-J., Kronz, A. & Koch-Müller, M. (2009). The evolution of late-Hercynian granites and rhyolites documented by quartz—A review. Earth Env Sci T R Soc 100(Special issue 1-2), 185204.Google Scholar
Müller, A., Wiedenbeck, M., Van den Kerkhof, A.M., Kronz, A. & Simon, K. (2003b). Trace elements in quartz: A combined electron microprobe, secondary ion mass spectrometry, laser ablation ICPMS, and cathodoluminescence study. Eur J Mineral 15, 747763.CrossRefGoogle Scholar
Peppard, B.T., Steele, I.M., Davis, A.M., Wallace, P.J. & Anderson, A.T. (2001). Zoned quartz phenocrysts from the rhyolitic bishop tuff. Am Mineral 86, 10341052.CrossRefGoogle Scholar
Perkins, M.B. & Nash, B.P. (2002). Explosive silicic volcanism of the Yellowstone hotspot: The ash fall tuff record. Geol Soc Am Bull 114, 367381.2.0.CO;2>CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. & Pankrath, R. (1992). Microdistribution of Al, Li, and Na in quartz: Possible causes and correlation with short-lived cathodoluminescence. Am Mineral 77, 534544.Google Scholar
Remond, G., Phillips, M.R. & Roque-Carmes, C. (2000). Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 59126. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Rusk, B.G., Koenig, A. & Lowers, H. (2011). Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Am Mineral 96, 703708.CrossRefGoogle Scholar
Rusk, B.G., Lowers, H.A. & Reed, M.H. (2008). Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 36, 547550.CrossRefGoogle Scholar
Rusk, B.G., Reed, M.H., Dilles, J.H. & Kent, A.J.R. (2006). Intensity of quartz cathodoluminescence and trace element content in quartz from the porphyry copper deposit at Butte, Montana. Am Mineral 91, 13001312.CrossRefGoogle Scholar
Sato, K. & Santosh, M. (2007). Titanium in quartz as a record of ultrahigh-temperature metamorphism: The granulites of Kurur, southern India. Mineral Mag 71, 143154.CrossRefGoogle Scholar
Shane, P., Smith, V.C. & Nairn, I. (2008). Millennial timescale resolution of rhyolite magma recharge at Tarawera volcano: Insights from quartz chemistry and melt inclusions. Contrib Mineral Petrol 156, 397411.CrossRefGoogle Scholar
Smith, R.B., Jordan, M., Steinberger, B., Puskas, C.M., Farrell, J., Waite, G.P., Husen, S., Chang, W.L. & O'Connell, R.O. (2009). Geodynamics of the Yellowstone Hotspot and Mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J Volcanol Geotherm Res 188, 2656.CrossRefGoogle Scholar
Spear, F.S. & Wark, D.A. (2009). Cathodoluminescence imaging and titanium thermometry metamorphic quartz. J Metamorph Geol 27, 187205.CrossRefGoogle Scholar
Stevens-Kalceff, M.A. (2009). Cathodoluminescence micro-characterization of point defects in α-quartz. Mineral Mag 73, 585605.CrossRefGoogle Scholar
Stevens-Kalceff, M.A. & Phillips, M.R. (1995). Cathodoluminescence micro-characterization of the defect structure of quartz. Phys Rev B 52, 31223134.CrossRefGoogle Scholar
Storm, L.C. & Spear, F.S. (2009). Application of the titanium-in-quartz thermometer to pelitic migmatites from the Adirondack Highlands, New York. J Metamorph Geol 27, 479494.CrossRefGoogle Scholar
Student, J.J., Wark, D.A., Mutchler, S.R. & Bodnar, R.J. (2006). Pristine rhyolite glass melt inclusions in quartz phenocrysts from the 1.1 Ga midcontinent rift system, Keweenaw Peninsula, Michigan. Eos, Trans Am Geophys Union 87, Fall Meeting Suppl., Abstract V23C-0619. Google Scholar
Student, J.J., Wark, D.A., Mutchler, S.R. & Bodnar, R.J. (2007). Thermal evolution of Proterozoic (>1 Ga) rhyolite magma based on analysis of melt inclusions and trace elements in quartz from the Keweenaw Peninsula of Michigan. Institute on Lake Superior Geology 53rd Annual Meeting, Proceedings and Abstracts, 53(P1), 7778.Google Scholar
Suttner, L.J. & Leininger, R.K. (1972). Comparison of trace element content of plutonic, volcanic and metamorphic quartz from southwestern Montana. Bull Geol Soc Am 83, 18551862.CrossRefGoogle Scholar
Thomas, J.B. & Watson, E.B. (2012). Application of the Ti-in quartz thermobarometer to rutile-free systems. Reply to: A comment on: “TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz” by Thomas et al. Contrib Mineral Petrol 164, 369374.CrossRefGoogle Scholar
Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K. & Lanzirotti, A. (2010). TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160, 743759.CrossRefGoogle Scholar
Ulrich, T., Kamber, B., Jugo, P. & Tinkham, D. (2009). Imaging element distribution patterns in minerals by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Can Mineral 47, 10011012.CrossRefGoogle Scholar
Vasyukova, O.V., Goemann, K., MacRae, C.M., Wilson, N.C. & Kamenetsky, V.S. (2013). Cathodoluminescence properties of quartz eyes from porphyry-type deposits: Implication to their origin. Am Mineral doi.org/10.2138/am.2013.4018. CrossRefGoogle Scholar
Vazquez, J., Kyriazis, F., Reid, M.R., Sehler, R.C. & Ramos, F.C. (2009). Thermochemical evolution of young rhyolites at Yellowstone: Evidence for a cooling but periodically replenished postcaldera magma reservoir. J Volcanol Geotherm Res 188, 186196.CrossRefGoogle Scholar
Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J. & Watson, E.B. (2007). Pre-eruption recharge of the bishop magma system. Geology 35, 235238.CrossRefGoogle Scholar
Wark, D.A. & Watson, E.B. (2006). The TitaniQ: A titanium-in-quartz geothermometer. Contrib Mineral Petrol 152, 743754.CrossRefGoogle Scholar
Watson, E.B. & Harrison, T.M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64, 295304.CrossRefGoogle Scholar
Watt, G.R., Wright, P., Galloway, S. & McLean, C. (1997). Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim Cosmochim Acta 61, 43374348.CrossRefGoogle Scholar
Watts, K.E., Bindeman, I.N. & Schmitt, A.K. (2012). Crystal scale anatomy of a dying supervolcano: An isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib Mineral Petrol 164, 4567.CrossRefGoogle Scholar
Wiebe, R.A., Wark, D.A. & Hawkins, D.P. (2007). Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. Contrib Mineral Petrol 154, 439453.CrossRefGoogle Scholar
Wilson, C.J.N., Seward, T.M., Allan, A.S.R., Charlier, B.L.A. & Bello, L. (2012). A comment on: “TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz” by Jay B. Thomas, E. Bruce Watson, Frank S. Spear, Phillip T. Shemella, Saroj K. Nayak and Antonio Lanzirotti. Contrib Mineral Petrol 164, 359368.CrossRefGoogle Scholar