Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:46:24.268Z Has data issue: false hasContentIssue false

Studies of Local Structural Distortions in Strained Ultrathin BaTiO3 Films Using Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  21 March 2014

Daesung Park*
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstrasse 55, D-52074 Aachen, Germany Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C), Research Centre Jülich, D-52425 Jülich, Germany
Anja Herpers
Affiliation:
Peter-Grünberg-Institute 7, Forschungszentrum Jülich, D-52425 Jülich, Germany
Tobias Menke
Affiliation:
Peter-Grünberg-Institute 7, Forschungszentrum Jülich, D-52425 Jülich, Germany
Markus Heidelmann
Affiliation:
Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich, Germany Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C), Research Centre Jülich, D-52425 Jülich, Germany
Lothar Houben
Affiliation:
Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich, Germany Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C), Research Centre Jülich, D-52425 Jülich, Germany
Regina Dittmann
Affiliation:
Peter-Grünberg-Institute 7, Forschungszentrum Jülich, D-52425 Jülich, Germany
Joachim Mayer
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstrasse 55, D-52074 Aachen, Germany Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C), Research Centre Jülich, D-52425 Jülich, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ávila-Brande, D., Boese, M., Houben, L., Schubert, J. & Luysberg, M. (2011). Strain-induce shift of the crystal-field splitting of SrTiO3 embedded in scandate multilayers. ACS Appl Mater Interfaces 3, 15451551.Google Scholar
Bals, S., Tirry, W., Geurts, R., Yang, Z. & Schryvers, D. (2007). High-quality sample preparation by low kV FIB thinning for analytical TEM measurements. Microsc Microanal 13, 8086.Google Scholar
Brydson, R., Sauer, H., Engel, W., Thomass, J., Zeitler, E., Kosugi, N. & Kuroda, H. (1989). Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: A test of structural sensitivity. J Phys Condens Matter 1, 797812.Google Scholar
Duan, C., Sabirianov, R., Mei, W., Jaswal, S. & Tsymbal, E. (2006). Interface effect on ferroelectricity at the nanoscale. Nano Lett 6, 483487.Google Scholar
Eberg, E., Van Helvoort, A.T.J., Takahashi, R., Gass, M., Mendis, B., Bleloch, A., Holmestad, R. & Tybell, T. (2011). Electron energy loss spectroscopy investigation of Pb and Ti hybridization with O at the PbTiO3/SrTiO3 interface. J Appl Phys 109, 034104.Google Scholar
Goodhew, P. (2011). General introduction to transmission electron microscopy (TEM). In Aberration-Corrected Analytical Electron Microscopy, Brydson R. (Ed.), pp. 119. Hoboken, NJ, USA: Wiley & Sons.Google Scholar
Harada, J., Pedersen, T. & Barnea, Z. (1970). X-ray and neutron diffraction study of tetragonal barium titanate. Acta Crystallogr Sect A 26, 336344.Google Scholar
Heidelmann, M., Barthel, J. & Houben, L. (2009). StripeSTEM, a technique for the isochronous acquisition of high angle annular dark-field images and monolayer resolved electron energy loss spectra. Ultramicroscopy 109, 14471452.Google Scholar
Houben, L. (2009). iMtools software package for digital image processing of electron micrographs, Research Center Jülich. Available at http://www.er-c.org/methods/software.htm. Accessed October 28, 2013.Google Scholar
Houben, L., Thust, A. & Urban, K. (2006). Atomic-precision determination of the reconstruction of a 90° tilt boundary in YBa2Cu3O7-δ by aberration corrected HRTEM. Ultramicroscopy 106, 200214.Google Scholar
Jan, J., Kumar, K., Chiou, J., Tsai, H., Shih, H., Hsueh, H., Ray, S., Asokan, K., Pong, W., Tsai, M.-H., Kuo, S. & Hsieh, W. (2003). Effect of the Ca content on the electronic structure of Pb1-xCaxTiO3 perovskites. Appl Phys Lett 83, 33113313.Google Scholar
Jia, C., Nagarajan, V., He, J., Houben, L., Zhao, T., Ramesh, R., Urban, K. & Waser, R. (2006). Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nature Mater 6, 6469.Google Scholar
Junquera, J. & Ghosez, P. (2003). Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506509.Google Scholar
Lu, H., Liu, X., Burton, J.D., Bark, C.-W., Wang, Y., Zhang, Y., Kim, D.J., Stamm, A., Lukashev, P., Felker, D.A., Folkman, C.M., Gao, P., Rzchowski, M.S., Pan, X.Q., Eom, C.-B., Tsymbal, E.Y. & Gruverman, A. (2012). Enhancement of ferroelectric polarization stability by interface engineering. Adv Mater 24, 12091216.Google Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bulletin 32, 400407.Google Scholar
Petraru, A., Pertsev, N., Kohlstedt, H., Poppe, U., Waser, R., Solbach, A. & Klemradt, U. (2007). Polarization and lattice strains in epitaxial BaTiO3 films grown by high-pressure sputtering. J Appl Phys 101, 114106.Google Scholar
Sefat, A.S., Amow, G., Wu, M.-Y., Botton, G.A. & Greedan, J. (2005). High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x= 0 to 0.33. J Solid State Chem 178, 10081016.Google Scholar
Stengel, M., Vanderbilt, D. & Spaldin, N. (2009). Enhancement of ferroelectricity at metal-oxide interfaces. Nat Mater 101, 392397.Google Scholar
Torres-Pardo, A., Gloter, A., Zubko, P., Jecklin, N., Lichtensteiger, C., Colliex, C., Triscone, J.-M. & Stéphan, O. (2011). Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys Rev B 84, 220102.Google Scholar
Umeno, Y., Shimada, T., Kitamura, T. & Elsässer, C. (2006). Ab initio density functional theory study of strain effects on ferroelectricity at PbTiO3 surfaces. Phys Rev B 74, 174111.Google Scholar
Zhang, J., Visinoiu, A., Heyroth, F., Syrowatka, F., Alexe, M., Hesse, D. & Leipner, H.S. (2005). High-resolution electron energy-loss spectroscopy of BaTiO3/SrTiO3 multilayers. Phys Rev B 71, 064108.Google Scholar