Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T15:00:12.228Z Has data issue: false hasContentIssue false

Structural and Ultrastructural Analysis of the Multiple Myeloma Cell Niche and a Patient-Specific Model of Plasma Cell Dysfunction

Published online by Cambridge University Press:  09 December 2021

Katrina A. Harmon
Affiliation:
Organogenesis, Birmingham, AL35216, USA
Sara Roman
Affiliation:
Altasciences, Greenville, SC29601, USA
Harrison D. Lancaster
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
Saeeda Chowhury
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA Prisma Health Cancer Institute, Greenville, SC29605, USA
Elizabeth Cull
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA Prisma Health Cancer Institute, Greenville, SC29605, USA
Richard L. Goodwin*
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
Sergio Arce
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA Prisma Health Cancer Institute, Greenville, SC29605, USA
Suzanne Fanning
Affiliation:
School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA Department of Internal Medicine, Prisma Health System Upstate, Greenville, SC29605, USA Prisma Health Cancer Institute, Greenville, SC29605, USA
*
*Corresponding author: Richard L. Goodwin, E-mail: [email protected]
Get access

Abstract

Multiple myeloma (MM) is a deadly, incurable malignancy in which antibody-secreting plasma cells (PCs) become neoplastic. Previous studies have shown that the PC niche plays a role cancer progression. Bone marrow (BM) cores from MM and a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) patients were analyzed with confocal and transmission electron microscopy. The BM aspirates from these patients were used to generate 3D PC cultures. These in vitro cultures were then assayed for the molecular, cellular, and ultrastructural hallmarks of dysfunctional PC at days 1 and 5. In vivo, evidence of PC endoplasmic reticulum stress was found in both MM and MGUS BM; however, evidence of PC autophagy was found only in MM BM. Analysis of in vitro cultures found that MM PC can survive and maintain a differentiated phenotype over an unprecedented 5 days, had higher levels of paraprotein production when compared to MGUS-derived cultures, and showed evidence of PC autophagy as well. Increased fibronectin deposition around PC associated with disease severity and autophagy dysregulation was also observed. 3D cultures constructed from BM aspirates from MGUS and MM patients allow for long-term culture of functional PC while maintaining their distinct morphological phenotypes.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These two authors are co-senior authors.

References

Arce, S, Luger, E, Muehlinghaus, G, et al. (2004). CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J Leukoc Biol 75(6), 10221028. doi:10.1189/jlb.0603279CrossRefGoogle ScholarPubMed
Avet-Loiseau, H, Attal, M, Moreau, P, et al. (2007). Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood 109(8), 34893495. doi:10.1182/blood-2006-08-040410CrossRefGoogle ScholarPubMed
Bagratuni, T, Wu, P, Gonzalez de Castro, D, et al. (2010). XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood 116(2), 250253. doi:10.1182/blood-2010-01-263236CrossRefGoogle ScholarPubMed
Banerjee, SS, Verma, S & Shanks, JH (2004). Morphological variants of plasma cell tumours. Histopathology 44(1), 28. doi:10.1111/j.1365-2559.2004.01763.xCrossRefGoogle ScholarPubMed
Calame, KL (2001). Plasma cells: Finding new light at the end of B cell development. Nat Immunol 2(12), 11031108. doi:10.1038/ni1201-1103CrossRefGoogle ScholarPubMed
Cassese, G, Arce, S, Hauser, AE, et al. (2003). Plasma cell survival Is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171(4), 16841690. doi:10.4049/jimmunol.171.4.1684CrossRefGoogle ScholarPubMed
Chhabra, S, Jain, S, Wallace, C, Hong, F & Liu, B (2015). High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol 8(1), 19. doi:10.1186/s13045-015-0177-6CrossRefGoogle ScholarPubMed
Cretu, A & Brooks, PC (2007). Impact of the non-cellular tumor microenvironment on metastasis: Potential therapeutic and imaging opportunities. J Cell Physiol 213, 391402. doi:10.1002/JCPCrossRefGoogle ScholarPubMed
de la Puente, P, Muz, B, Gilson, RC, et al. (2015). 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 73(1), 7084. doi:10.1016/j.biomaterials.2015.09.017CrossRefGoogle ScholarPubMed
Di Marzo, L, Desantis, V, Solimando, AG, et al. (2016). Microenvironment drug resistance in multiple myeloma: Emerging new players. Oncotarget 7(37), 6069860711. doi:10.18632/oncotarget.10849CrossRefGoogle ScholarPubMed
Fei, M, Hang, Q, Hou, S & Ruan, C (2013). Cell adhesion to fibronectin down-regulates the expression of Spy1 and contributes to drug resistance in multiple myeloma cells. Int J Hematol 98(4), 446455. doi:10.1007/s12185-013-1435-4CrossRefGoogle ScholarPubMed
Ferrarini, M, Steimberg, N, Ponzoni, M, et al. (2013). Ex-vivo dynamic 3-D culture of human tissues in the RCCSTM bioreactor allows the study of multiple myeloma biology and response to therapy. PLoS One 8(8), 110. doi:10.1371/journal.pone.0071613CrossRefGoogle Scholar
Fu, Y-F, Liu, X, Gao, M, Zhang, Y-N & Liu, J (2017). Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3 K/Akt/mTOR signaling pathway. Oncotarget 8(37), 6109361106. doi:10.18632/oncotarget.17862CrossRefGoogle Scholar
Guillerey, C, Nakamura, K, Vuckovic, S, Hill, GR & Smyth, MJ (2016). Immune responses in multiple myeloma: Role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 73(8), 15691589. doi:10.1007/s00018-016-2135-zCrossRefGoogle ScholarPubMed
Gupta, D, Treon, SP, Shima, Y, et al. (2001). Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: Therapeutic applications. Leukemia 15(12), 19501961. doi:10.1038/sj.leu.2402295CrossRefGoogle ScholarPubMed
Gupta, VA, Matulis, SM, Conage-Pough, JE, et al. (2017). Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood 129(14), 19691979. doi:10.1182/blood-2016-10-745059CrossRefGoogle ScholarPubMed
Hideshima, T, Mitsiades, C, Tonon, G, Richardson, PG & Anderson, KC (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7(8), 585598. doi:10.1038/nrc2189CrossRefGoogle ScholarPubMed
Hoang, B, Benavides, A, Shi, Y, Frost, P & Lichtenstein, A (2009). Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther 8(7), 19741984. doi:10.1158/1535-7163.MCT-08-1177CrossRefGoogle ScholarPubMed
Jakubikova, J, Cholujova, D, Hideshima, T, et al. (2016). A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: Biologic and clinical applications. Oncotarget 7(47). doi:10.18632/oncotarget.12643CrossRefGoogle ScholarPubMed
Jones, RS, Chang, PH, Perahia, T, et al. (2017). Design and fabrication of a three-dimensional in vitro system for modeling vascular stenosis. Microsc Microanal 23(04), 859871. doi:10.1017/S1431927617012302CrossRefGoogle ScholarPubMed
Jourdan, M, Cren, M, Robert, N, et al. (2014). IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia 28(8), 16471656. doi:10.1038/leu.2014.61CrossRefGoogle ScholarPubMed
Kibler, C, Schermutzkp, F, Waller, HD, Timpl, R & Klein, G (1998). Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules. Cell Adhes Commun 5(4), 307323. doi:10.3109/15419069809040300CrossRefGoogle ScholarPubMed
Kirshner, J, Thulien, KJ, Martin, LD, et al. (2008). A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 112(7), 29352946. doi:10.1182/blood-2008-02-142430.AnCrossRefGoogle ScholarPubMed
Kuehl, WM & Bergsagel, PL (2012). Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 122(10), 34563463. doi:10.1172/JCI61188CrossRefGoogle ScholarPubMed
Kumar, S, Kimlinger, T & Morice, W (2010). Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol 23(3), 433451. doi:10.1016/j.beha.2010.09.002CrossRefGoogle ScholarPubMed
Landskron, G, De la Fuente, M, Thuwajit, P, Thuwajit, C & Hermoso, MA (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res(2014), 119. doi:10.1155/2014/149185CrossRefGoogle ScholarPubMed
Lauta, VM (2003). A review of the cytokine network in multiple myeloma: Diagnostic, prognostic, and therapeutic implications. Cancer 97(10), 24402452. doi:10.1002/cncr.11072CrossRefGoogle ScholarPubMed
Lin, L, Yan, F, Zhao, D, et al. (2016). Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3. Oncotarget 7(9), 98449858. doi:10.18632/oncotarget.7151CrossRefGoogle ScholarPubMed
Mahindra, A, Laubach, J, Raje, N, Munshi, N, Richardson, PG & Anderson, K (2012). Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 9, 135143.CrossRefGoogle ScholarPubMed
Martinez-Murillo, P, Pramanik, L, Sundling, C, et al. (2016). CD138 and CD31 double-positive cells comprise the functional antibody-secreting plasma cell compartment in primate bone marrow. Front Immunol 7(JUN), 110. doi:10.3389/fimmu.2016.00242CrossRefGoogle ScholarPubMed
Nakamura, M, Gotoh, T, Okuno, Y, et al. (2006). Activation of the endoplasmic reticulum stress pathway is associated with survival of myeloma cells. Leuk Lymphoma 47(3), 531539. doi:10.1080/10428190500312196CrossRefGoogle ScholarPubMed
Nikesitch, N, Lee, JM, Ling, S & Roberts, TL (2018). Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Transl Immunol 7(1), 113. doi:10.1002/cti2.1007CrossRefGoogle ScholarPubMed
Nutt, SL, Hodgkin, PD, Tarlinton, DM & Corcoran, LM (2015). The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3), 160171. doi:10.1038/nri3795CrossRefGoogle ScholarPubMed
Ogata, M, Hino, S-i, Saito, A, et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24), 92209231. doi:10.1128/MCB.01453-06CrossRefGoogle ScholarPubMed
Pengo, N, Scolari, M, Oliva, L, et al. (2013). Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol 14, 298. doi:10.1038/ni.2524CrossRefGoogle ScholarPubMed
Prasad, R, Yadav, RR, Singh, A, Mathur, SP, Mangal, Y & Singh, M (2009). Non-secretory multiple myeloma presenting with diffuse sclerosis of affected bones interspersed with osteolytic lesions. Br J Radiol 82(974). doi:10.1259/bjr/68683396CrossRefGoogle ScholarPubMed
Purushothaman, A, Bandari, SK, Liu, J, Mobley, JA, Brown, EA & Sanderson, RD (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 291(4), 16521663. doi:10.1074/jbc.M115.686295CrossRefGoogle ScholarPubMed
Rajan, AM & Rajkumar, SV (2015). Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J 5(10), 17. doi:10.1038/bcj.2015.92CrossRefGoogle ScholarPubMed
Ribourtout, B & Zandecki, M (2015). Plasma cell morphology in multiple myeloma and related disorders. Morphologie 99(325), 3862. doi:10.1016/j.morpho.2015.02.001CrossRefGoogle ScholarPubMed
Scheller, J, Chalaris, A, Schmidt-Arras, D & Rose-John, S (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta - Mol Cell Res 1813(5), 878888. doi:10.1016/j.bbamcr.2011.01.034CrossRefGoogle ScholarPubMed
Schwendener, RA & Mete, S (2014). A new approach to cancer therapy: The tumor microenivornment as target. Front Clin Drug Res Anti-Cancer Agents 1, 368.Google Scholar
Shapiro-Shelef, M & Calame, KC (2005). Regulation of plasma-cell development. Nat Rev Immunol 5(3), 230242. doi:10.1038/nri1572CrossRefGoogle ScholarPubMed
Shen, K, Johnson, DW, Vesey, DA, McGuckin, MA & Gobe, GC (2018). Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 23(3), 317334. doi:10.1007/s12192-017-0844-3CrossRefGoogle ScholarPubMed
Skliris, A, Labropoulou, VT, Papachristou, DJ, Aletras, A, Karamanos, NK & Theocharis, AD (2013). Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases. FEBS J 280(10), 23422352. doi:10.1111/febs.12179CrossRefGoogle ScholarPubMed
Tancred, TM, Belch, AR, Reiman, T, Pilarski, LM & Kirshner, J (2009). Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J Histochem Cytochem 57(3), 239247. doi:10.1369/jhc.2008.952200CrossRefGoogle ScholarPubMed
Terpos, E, Dimopoulos, MA, Sezer, O, et al. (2010). The use of biochemical markers of bone remodeling in multiple myeloma: A report of the International Myeloma Working Group. Leukemia 24(10), 17001712. doi:10.1038/leu.2010.173CrossRefGoogle ScholarPubMed
Travers, KJ, Patil, CK, Wodicka, L, Lockhart, DJ, Weissman, JS & Walter, P (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3), 249258. doi:10.1016/S0092-8674(00)80835-1CrossRefGoogle ScholarPubMed
Vincent, T & Mechti, N (2005). Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Leuk Lymphoma 46(6), 803811. doi:10.1080/10428190500051448CrossRefGoogle Scholar
Vincenz, L, Jager, R, O'Dwyer, M & Samali, A (2013). Endoplasmic reticulum stress and the unfolded protein response: Targeting the Achilles heel of multiple myeloma. Mol Cancer Ther 12(6), 831843. doi:10.1158/1535-7163.mct-12-0782CrossRefGoogle ScholarPubMed
Wajs, J & Sawicki, W (2013). The morphology of myeloma cells changes with progression of the disease. Wspolczesna Onkol 17(3), 272275. doi:10.5114/wo.2013.35282CrossRefGoogle ScholarPubMed
Wang, L, Jin, FY, Li, Y, et al. (2018). IgA type multiple myeloma, clinical features, and prognosis. Chin Med J (Engl) 131(10), 12491250. doi:10.4103/0366-6999.231513CrossRefGoogle ScholarPubMed
Wardemann, H, Ellyard MCN, IJ, et al. (2004). Antigen-selected, immunoglobulin-secreting cells persist in human spleen and bone marrow. Blood 103(10), 38053812. doi:10.1182/blood-2003-09-3109.SupportedGoogle Scholar
Winter, O, Dame, C, Jundt, F & Hiepe, F (2012). Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy. J Immunol 189(11), 51055111. doi:10.4049/jimmunol.1202317CrossRefGoogle Scholar
Wols, HAM, Underhill, GH, Kansas, GS & Witte, PL (2014). The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J Immunol 169(8), 42134221. doi:10.4049/jimmunol.169.8.4213CrossRefGoogle Scholar
Yao, X, Huang, J, Zhong, H, et al. (2014). Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 141(2), 125129. doi:10.1016/j.pharmthera.2013.09.004CrossRefGoogle ScholarPubMed
Yun, Z & Qun, S (2017). Targeting autophagy in multiple myeloma. Leuk Res 59(155), 97104. doi:10.1016/j.leukres.2017.06.002CrossRefGoogle ScholarPubMed
Zdzisińska, B, Roliński, J, Piersiak, T & Kandefer-Szerszeń, M (2009). A comparison of cytokine production in 2-dimensional and 3-dimensional cultures of bone marrow stromal cells of muliple myeloma patients in response to RPMI8226 myeloma cells. Folia Histochem Cytobiol 47(1), 6974. doi:10.2478/v10042-009-0015-1CrossRefGoogle Scholar
Zhang, W, Lee, WY, Siegel, DS, Tolias, P & Zilberberg, J (2014). Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng Part C Methods 20(8), 663670. doi:10.1089/ten.tec.2013.0490CrossRefGoogle ScholarPubMed

Harmon et al. supplementary material

Harmon et al. supplementary material 1

Download Harmon et al. supplementary material(Video)
Video 3.6 MB
Supplementary material: File

Harmon et al. supplementary material

Harmon et al. supplementary material 2

Download Harmon et al. supplementary material(File)
File 8.2 KB