Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T15:01:03.878Z Has data issue: false hasContentIssue false

Strain-Induced Selective Growth in 1.5% Temper-Rolled Fe∼1%Si

Published online by Cambridge University Press:  23 May 2011

Tricia A. Bennett*
Affiliation:
Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA Materials Science & Engineering Department, Ghent University, Technology Park 903, B-9052, Ghent, Belgium
Peter N. Kalu
Affiliation:
FAMU-FSU College of Engineering and National High Magnetic Field Laboratory, Tallahassee, FL, USA
Anthony D. Rollett
Affiliation:
Materials Science & Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Strain-induced selective growth was investigated in a 1.5% temper-rolled Fe∼1%Si alloy using the electron backscatter diffraction (EBSD) technique. The EBSD technique was used to quantify the presence of orientation spreads within grains and to show that this particular case of selective growth can be directly related to differences in stored energy as reflected in the geometrically necessary dislocation content. The differences in stored energy were sufficient to give rise to selective growth as evidenced by bi-modal grain sizes.

Type
Electron Backscatter Diffraction Special Section
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvi, M.H., Cheong, S., Weiland, H. & Rollett, A.D. (2004). Recrystallization and texture development in hot rolled 1050 aluminum. In Materials Science Forum 467–470, Bacroix, B., Driver, J.H., Le Gall, R., Maurice, Cl., Penelle, R., Réglé, H. & Tabourot, L. (Eds.), pp. 357362. Stafa-Zurich, Switzerland: Trans Tech Publications.Google Scholar
Bellier, S. & Doherty, R. (1977). The structure of deformed aluminium and its recrystallization—Investigations with transmission Kossel diffraction. Acta Metall 25, 521538.CrossRefGoogle Scholar
Chen, N., Zaefferer, S., Lahn, L., Gunther, K. & Raabe, D. (2002). Effects of topology on abnormal grain growth in silicon steel. Acta Mater 51, 17551765.CrossRefGoogle Scholar
Cheong, S.W., Hilinski, E.J. & Rollett, A.D. (2003). Grain growth in a low-loss cold-rolled motor lamination steel. Metall Mater Trans A 34A, 13211327.CrossRefGoogle Scholar
Delannay, L., Mishin, O.V., Juul Jensen, D. & van Houtte, P. (2001). Quantitative analysis of grain subdivision in cold rolled aluminium. Acta Mater 49, 24412451.CrossRefGoogle Scholar
Doherty, R.D. (1997). Recrystallization and texture. Prog Mater Sci 42(1-4), 3958.CrossRefGoogle Scholar
Gerber, Ph., Baudin, T., Jakani, S., Mathon, M.H. & Bacroix, B. (2004). Estimation of stored energy distribution from EBSD measurements. In Materials Science Forum 467–470, Bacroix, B., Driver, J.H., Le Gall, R., Maurice, Cl., Penelle, R., Réglé, H. & Tabourot, L. (Eds.), pp. 5156. Stafa-Zurich, Switzerland: Trans Tech Publications.Google Scholar
Grest, G.S., Anderson, M.P., Srolovitz, D.J. & Rollett, A.D. (1990). Abnormal grain growth in three dimensions. Scripta Metall Mater 24, 661665.CrossRefGoogle Scholar
Hansen, N. & Juul Jensen, D. (1986). Deformation and recrystallization textures in commercially pure aluminum. Metall Trans A 17A, 253259.CrossRefGoogle Scholar
Hayakawa, Y., Szpunar, J.A., Palumbo, G. & Lin, P. (1996). The role of grain boundary character distribution in Goss texture development in electrical steels. J Mag Magn Mater 160, 143144.CrossRefGoogle Scholar
He, W., Ma, W. & Pantleon, W. (2008). Microstructure of individual grains in cold-rolled aluminium from orientation inhomogeneities resolved by electron backscattering diffraction. Mat Sci Eng A 494, 2127.CrossRefGoogle Scholar
Homma, H. & Hutchinson, W.B. (2003). Orientation dependence of secondary recrystallization in silicon-iron. Acta Mater 51, 37953805.CrossRefGoogle Scholar
Humphreys, F.J. (1997). A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater 45, 42314240.CrossRefGoogle Scholar
Kang, J.-Y., Kim, D.-I., Oh, K.H. & Lee, H.-C. (2004). Orientation spread in deformed grains and its relevance to recrystallization texture development in IF steels. In Materials Science Forum 467–470, Bacroix, B., Driver, J.H., Le Gall, R., Maurice, Cl., Penelle, R., Réglé, H. & Tabourot, L. (Eds.), pp. 6974. Stafa-Zurich, Switzerland: Trans Tech Publications.Google Scholar
Lebensohn, R.A., Brenner, R., Castelnau, O. & Rollett, A.D. (2008). Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56, 39143926.CrossRefGoogle Scholar
Lin, P., Palumbo, G., Harase, J. & Aust, K.T. (1996). Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy. Acta Mater 44, 46774683.CrossRefGoogle Scholar
Mullins, W.W. (1956). Two-dimensional motion of idealized grain boundaries. J Appl Phys 27, 900904.CrossRefGoogle Scholar
Park, H., Kim, D.Y., Hwang, N.M., Joo, Y.C., Han, C.H. & Kim, J.K. (2004). Microstructural evidence of abnormal grain growth by solid-state wetting in Fe-3%Si steel. J App Phys 95, 55155521.CrossRefGoogle Scholar
Rajmohan, N., Hayakawa, Y., Szpunar, J.A. & Root, J.H. (1997). Neutron diffraction method for stored energy measurement in interstitial free steel. Acta Mater 45, 24852494.CrossRefGoogle Scholar
Rajmohan, N., Szpunar, J.A. & Hayakawa, Y. (1999). A role of fractions of mobile grain boundaries in secondary recrystallization of Fe-Si steels. Acta Mater 47, 29993008.CrossRefGoogle Scholar
Rollett, A.D. (2005). Abnormal grain growth and texture development. In Materials Science Forum 495–497, Van Houtte, P. & Kestens, L. (Eds.), pp. 11711176. Stafa-Zurich, Switzerland: Trans Tech Publications.Google Scholar
Rollett, A.D. & Mullins, W.W. (1997). On the growth of abnormal grains. Scripta Mater 36, 975980.CrossRefGoogle Scholar
Rollett, A.D., Srolovitz, D.J. & Anderson, M.P. (1989). Simulation and theory of abnormal grain growth-anisotropic grain boundary energies and mobilities. Acta Metall 37, 12271240.CrossRefGoogle Scholar
Scheriau, S. & Pippan, R. (2008). Influence of grain size on orientation changes during plastic deformation. Mat Sci Eng A 493, 4852.CrossRefGoogle Scholar
Thompson, C.V., Frost, H.J. & Spaepan, F. (1987). The relative rates of secondary and normal grain growth. Acta Metall 35, 887890.CrossRefGoogle Scholar
Verbeken, K. & Kestens, L. (2003). Strain-induced selective growth in an ultra low carbon steel after a small rolling reduction. Acta Mater 51, 16791690.CrossRefGoogle Scholar