Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:27:32.108Z Has data issue: false hasContentIssue false

A (S)TEM Gas Cell Holder with Localized Laser Heating for In Situ Experiments

Published online by Cambridge University Press:  04 March 2013

Shareghe Mehraeen*
Affiliation:
Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
Joseph T. McKeown*
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Pushkarraj V. Deshmukh
Affiliation:
E.A. Fischione Instruments, Inc., Export, PA 15632, USA
James E. Evans
Affiliation:
Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Patricia Abellan
Affiliation:
Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Pinghong Xu
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
Bryan W. Reed
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Mitra L. Taheri
Affiliation:
Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA
Paul E. Fischione
Affiliation:
E.A. Fischione Instruments, Inc., Export, PA 15632, USA
Nigel D. Browning
Affiliation:
Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
*
*Corresponding author. E-mail: [email protected]
**Corresponding author. E-mail: [email protected]
Get access

Abstract

The advent of aberration correction for transmission electron microscopy has transformed atomic resolution imaging into a nearly routine technique for structural analysis. Now an emerging frontier in electron microscopy is the development of in situ capabilities to observe reactions at atomic resolution in real time and within realistic environments. Here we present a new in situ gas cell holder that is designed for compatibility with a wide variety of sample type (i.e., dimpled 3-mm discs, standard mesh grids, various types of focused ion beam lamellae attached to half grids). Its capabilities include localized heating and precise control of the gas pressure and composition while simultaneously allowing atomic resolution imaging at ambient pressure. The results show that 0.25-nm lattice fringes are directly visible for nanoparticles imaged at ambient pressure with gas path lengths up to 20 μm. Additionally, we quantitatively demonstrate that while the attainable contrast and resolution decrease with increasing pressure and gas path length, resolutions better than 0.2 nm should be accessible at ambient pressure with gas path lengths less than the 15 μm utilized for these experiments.

Type
Software, Techniques, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, L., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P. & Damiano, J. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.Google Scholar
Baker, R.T.K. & Harris, P.S. (1972). Controlled atmosphere electron microscopy. J Phys E Sci Instrum 5, 793797.Google Scholar
Bergström, D., Powell, J. & Kaplan, A.F.H. (2007). Absorptance of nonferrous alloys to Nd:YLF and Nd:YAG laser light at room temperature. Appl Opt 46, 12901301.Google Scholar
Boyes, E.D. & Gai, P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.Google Scholar
Browning, N.D., Bonds, M.A., Campbell, G.H., Evans, J.E., LaGrange, T., Jungjohann, K.L., Masiel, D.J., McKeown, J., Mehraeen, S., Reed, B.W. & Santala, M. (2012). Recent developments in dynamic transmission electron microscopy. Curr Opin Solid St Mater Sci 16, 2330.Google Scholar
Butler, E.P. & Hale, K.F. (1981). Dynamic Experiments in the Electron Microscope. Amsterdam: North-Holland Publishing Group.Google Scholar
Chang, L.-Y., Barnard, A.S., Gontard, L.C. & Dunin-Borkowski, R.E. (2010). Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett 10, 30733076.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.Google Scholar
Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H.W. & Sarro, P.M. (2010). A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J Microelectromech Syst 19(2), 254264.Google Scholar
Crewe, A.V., Isaacson, M. & Johnson, D. (1969). A simple scanning electron microscope. Rev Sci Instrum 40, 241.CrossRefGoogle Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of a single atom. Science 168, 1338. CrossRefGoogle Scholar
Daulton, T.L., Little, B.J., Lowe, K. & Jones-Meehan, J. (2001). In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc Microanal 7, 470485.Google Scholar
de Jonge, N., Bigelow, W.C. & Veith, G.M. (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.Google Scholar
Deshmukh, P.V., Gronsky, J.J. & Fischione, P.E. (2012). In situ holder assembly, U.S. Patent 8178851. Alexandria, VA: U.S. Patent and Trademark Office. Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.Google Scholar
Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S. & Henry, C.R. (2007). Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. Mater Res Bull 32, 10441050.Google Scholar
Giorgio, S., Joao, S.S., Nitsche, S., Chaudanson, D., Sitja, G. & Henry, C.R. (2006). Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503507.Google Scholar
Hansen, P.L., Helveg, S. & Datye, A.K. (2006). Atomic-scale imaging of supported metal nanocluster catalysts in the working state. Adv Catal 50, 7795.Google Scholar
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S. & Topsoe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.CrossRefGoogle ScholarPubMed
Heide, H.G. (1962). Electron microscopic observation of specimens under controlled gas pressure. J Cell Biol 13, 147152.Google Scholar
Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Bjerne, S.C., Rostrup-Nielsen, J.R., Abild-Pederson, F. & Nørskov, J.K. (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429.Google Scholar
Henderson, R., Baldwin, J.M., Downing, K.H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147178.Google Scholar
Howie, A., Marks, L.D. & Pennycook, S.J. (1982). New imaging methods for catalyst particles. Ultramicroscopy 8, 163174.Google Scholar
Jungjohann, K.L., Evans, J.E., Aguiar, J., Arslan, I. & Browning, N.D. (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18, 621627.Google Scholar
Komatsu, M. & Mori, H. (2005). In situ HVEM study on copper oxidation using an improved environmental cell. J Electron Microsc 54, 99107.Google Scholar
Konishi, H., Ishikawa, A., Jiang, Y.-B., Buseck, P. & Xu, H. (2003). Sealed environmental cell microscopy. Microsc Microanal 9, 902903.Google Scholar
Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M. & Birnbaum, H.K. (1991). An environmental cell transmission electron microscope. Rev Sci Instrum 62, 14381444.Google Scholar
Marton, L. (1935). La microscopie electronique des objets biologiques. Bull Classe Sci Acad Roy Belgique 21, 553564.Google Scholar
Mkhoyan, K.A., Maccagnano-Zacher, S.E., Kirkland, E.J. & Silcox, J. (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. Jr. & Pennycook, S.J. (2004). Direct sub-Angstrom imaging of a crystal lattice. Science 305, 1741. Google Scholar
Niu, K.Y., Yang, J., Kulinich, S.A., Sun, J. & Du, X.W. (2010). Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid. Langmuir 26, 1665216657.Google Scholar
Parkinson, G.M. (1989). High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) of heterogeneous catalysts. Catal Lett 2, 303307.Google Scholar
Pennycook, S.J. (1981). Study of supported ruthenium catalysts by STEM. J Microsc 124, 1522.Google Scholar
Pennycook, S.J. (1989). Z-contrast STEM for materials science. Ultramicroscopy 30, 5869.Google Scholar
Pennycook, S.J., Howie, A., Shannon, M.D. & Whyman, R. (1983). Characterization of supported catalysts by high-resolution stem. J Mol Catal 20, 345355.Google Scholar
Robertson, I.M. & Teter, D. (1998). Controlled environmental transmission electron microscopy. Microsc Res Techniq 42, 260269.3.0.CO;2-U>CrossRefGoogle Scholar
Sharma, R. (2001). Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc Microanal 7, 494506.Google Scholar
Sharma, R. (2005). An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res 20, 16951707.Google Scholar
Sharma, R. & Weiss, K. (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Techniq 42, 270280.Google Scholar
Treacy, M.M.J., Howie, A. & Wilson, C.J. (1978). Z contrast of platinum and palladium catalysts. Philos Mag A 38, 569.Google Scholar
Ueda, K., Kawasaki, T., Hasegawa, H., Tanji, T. & Ichihashi, M. (2008). First observation of dynamic shape changes of a gold nanoparticle catalyst under reaction gas environment by transmission electron microscopy. Surf Interface Anal 40, 17251727.Google Scholar
Wang, R., Crozier, P.A. & Sharma, R. (2009). Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C 113, 57005704.Google Scholar
Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K. & Kamino, T. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.Google Scholar
Zhang, M., Olson, E.A., Twesten, R.D., Wen, J.G., Allen, L.H., Robertson, I.M. & Petrov, I. (2005). In situ transmission electron microscopy studies enabled by microelectromechanical system technology. J Mater Res 20, 18021807.Google Scholar
Zingg, D.S. & Hercules, D.M. (1978). Electron spectroscopy for chemical analysis studies of lead sulfide oxidation. J Phys Chem 82, 19921995.Google Scholar