Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T08:27:55.117Z Has data issue: false hasContentIssue false

Specifications for Hard Condensed Matter Specimens for Three-Dimensional High-Resolution Tomographies

Published online by Cambridge University Press:  10 April 2013

P. Bleuet*
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
G. Audoit
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J.-P. Barnes
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J. Bertheau
Affiliation:
ST Microelectronics, 850 Rue Jean Monnet, 38920 Crolles, France
Y. Dabin
Affiliation:
European Synchrotron Radiation Facility, BP 220 - 38043 Grenoble, France
H. Dansas
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J.-M. Fabbri
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
B. Florin
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
P. Gergaud
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
A. Grenier
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
G. Haberfehlner
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
E. Lay
Affiliation:
CEA, LITEN, 17 rue des Martyrs, 38054 Grenoble, Cedex 9, France
J. Laurencin
Affiliation:
CEA, LITEN, 17 rue des Martyrs, 38054 Grenoble, Cedex 9, France
R. Serra
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
J. Villanova
Affiliation:
European Synchrotron Radiation Facility, BP 220 - 38043 Grenoble, France
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Tomography is a standard and invaluable technique that covers a large range of length scales. It gives access to the inner morphology of specimens and to the three-dimensional (3D) distribution of physical quantities such as elemental composition, crystalline phases, oxidation state, or strain. These data are necessary to determine the effective properties of investigated heterogeneous media. However, each tomographic technique relies on severe sampling conditions and physical principles that require the sample to be adequately shaped. For that purpose, a wide range of sample preparation techniques is used, including mechanical machining, polishing, sawing, ion milling, or chemical techniques. Here, we focus on the basics of tomography that justify such advanced sample preparation, before reviewing and illustrating the main techniques. Performances and limits are highlighted, and we identify the best preparation technique for a particular tomographic scale and application. The targeted tomography techniques include hard X-ray micro- and nanotomography, electron nanotomography, and atom probe tomography. The article mainly focuses on hard condensed matter, including porous materials, alloys, and microelectronics applications, but also includes, to a lesser extent, biological considerations.

Type
Equipment and Techniques Development: Materials
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, B.V., Herland, A., Masich, S. & Inganäs, O. (2009). Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. Nano Lett 9(2), 853855.CrossRefGoogle ScholarPubMed
Attwood, D. (2006). Microscopy: Nanotomography comes of age. Nature 442(7103), 642643.CrossRefGoogle ScholarPubMed
Banhart, J. (2008). Advanced Tomographic Methods in Materials Research and Engineering. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Baruchel, J., Buffiere, J.-Y., Cloetens, P., Di Michiel, M., Ferrie, E., Ludwig, W., Maire, E. & Salvo, L. (2006). Advances in synchrotron radiation microtomography. Scripta Mater 55(1), 4146.CrossRefGoogle Scholar
Baumeister, W., Grimm, R. & Walz, J. (1999). Electron tomography of molecules and cells. Trends Cell Biol 9(2), 8185.CrossRefGoogle ScholarPubMed
Biermans, E., Molina, L., Batenburg, K.J., Bals, S. & Van Tendeloo, G. (2010). Measuring porosity at the nanoscale by quantitative electron tomography. Nano Lett 10(12), 50145019.CrossRefGoogle ScholarPubMed
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363(6428), 432435.CrossRefGoogle Scholar
Bonse, U., Busch, F., Günnewig, O., Beckmann, F., Pahl, R., Delling, G.N., Hahn, M. & Graeff, W. (1994). 3D computed X-ray tomography of human cancellous bone at 8 micron spatial and 10−4 energy resolution. Bone Miner 25(1), 2538.CrossRefGoogle ScholarPubMed
Brochin, C. (1999). Fixing device with freezing or heating tray. France: AMCC, International Patent WO 99/33607. Google Scholar
Cantoni, M., Knott, G. & Hébert, C. (2010). FIB-SEM nanotomography in materials and life science at EPFL. Microsc Microanaly 16(Suppl 2), 226227.CrossRefGoogle Scholar
Charles-Harris, M., Del Valle, S., Hentges, E., Bleuet, P., Lacroix, D. & Planell, J.A. (2007). Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials 28(30), 44294438.CrossRefGoogle ScholarPubMed
Cherns, P., Lorut, F., Dupré, C., Tachi, K., Cooper, D., Chabli, A. & Ernst, T. (2010). Electron tomography of gate-all-around nanowire transistors. J Phys Conf Ser 209, 012046. CrossRefGoogle Scholar
Courdurier, M., Noo, F., Defrise, M. & Kudo, H. (2008). Solving the interior problem of computed tomography using a priori knowledge. Inverse Probl 24, 065001. CrossRefGoogle ScholarPubMed
Deconihout, B., Bostel, A., Menand, A., Sarrau, J.M., Bouet, M., Chambreland, S. & Blavette, D. (1993). On the development of a 3D tomographic atom-probe. Appl Surf Sci 67(1-4), 444450.CrossRefGoogle Scholar
Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O. & Pfeiffer, F. (2010). Ptychographic X-ray computed tomography at the nanoscale. Nature 467(7314), 436439.CrossRefGoogle ScholarPubMed
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3), 92101.CrossRefGoogle ScholarPubMed
Fanelli, D. & Oktem, O. (2008). Electron tomography: A short overview with an emphasis on the absorption potential model for the forward problem Inverse Probl 24, 013001. CrossRefGoogle Scholar
Flannery, B.P., Deckman, H.W., Roberge, W.G. & D'amico, K.L. (1987). Three-dimensional X-ray microtomography. Science 237(4821), 14391444.CrossRefGoogle ScholarPubMed
Frank, J., Wagenknecht, T., McEwen, B.F., Marko, M., Hsieh, C.-E. & Mannella, C.A. (2002). Three-dimensional imaging of biological complexity. J Struct Biol 138(1-2), 8591.CrossRefGoogle ScholarPubMed
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77(4), 043705043708.CrossRefGoogle Scholar
Giannuzzi, L.A., Kempshall, B.W., Schwarz, S.M., Lomness, J.K., Prenitzer, B.I. & Stevie, F.A. (2005). FIB lift-out specimen preparation techniques. In Introduction to Focused Ion Beams, pp. 201228. New York: Springer.CrossRefGoogle Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.CrossRefGoogle Scholar
Grenier, A., Lardé, R., Cadel, E., Le Breton, J.M., Juraszek, J., Vurpillot, F., Tiercelin, N., Pernod, P. & Teillet, J. (2007). Structural investigation of TbCo2/Fe magnetostrictive thin films by tomographic atom probe and Mössbauer spectrometry. J Mag Mag Mater 310(2, Pt 3), 22152216.CrossRefGoogle Scholar
Grew, K.N., Chu, Y.S., Yi, J., Peracchio, A.A., Izzo, J.R., Hwu, Y., De Carlo, F. & Chiu, W.K.S. (2010). Nondestructive nanoscale 3D elemental mapping and analysis of a solid oxide fuel cell anode. J Electrochem Soc 157(6), B783B792.CrossRefGoogle Scholar
Grodzins, L. (1983). Critical absorption tomography of small samples: Proposed applications of synchrotron radiation to computerized tomography II. Nucl Instrum Methods Phys Res 206(3), 547552.CrossRefGoogle Scholar
Grünewald, K., Desai, P., Winkler, D.C., Heymann, J.B., Belnap, D.M., Baumeister, W. & Steven, A.C. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302(5649), 13961398.CrossRefGoogle ScholarPubMed
Guan, Y., Li, W., Gong, Y., Liu, G., Zhang, X., Chen, J., Gelb, J., Yun, W., Xiong, Y., Tian, Y. & Wang, H. (2011). Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography. J Power Sources 196(4), 19151919.CrossRefGoogle Scholar
Haberfehlner, G., Bayle-Guillemaud, P., Audoit, G., Lafond, D., Morel, P.H., Jousseaume, V., Ernst, T. & Bleuet, P. (2012). Four-dimensional spectral low-loss EFTEM tomography of silicon nanowire-based capacitors. Appl Phys Lett 101, 063108. CrossRefGoogle Scholar
Haberfehlner, G., Smith, M.J., Idrobo, J.C., Auvert, G., Sher, M-J., Winkler, M.T., Mazur, E., Gambacorti, N., Gradečak, S. & Bleuet, P. (forthcoming). Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography. Microsc Microanal (accepted for publication).Google Scholar
Hahn, B. & Louis, A.K. (2012). Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography. Inverse Probl 28(4), 045013. CrossRefGoogle Scholar
Hawkes, P. (2006). The electron microscope as a structure projector. In Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd ed., Frank, J. (Ed.). New York: Springer.Google Scholar
Izzo, J.R., Joshi, A.S., Grew, K.N., Chiu, W.K.S., Tkachuk, A., Wang, S.H. & Yun, W. (2008). Nondestructive reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 Å nm resolution. J Electrochem Soc 155(5), B504B508.CrossRefGoogle Scholar
Kak, A.C. & Slaney, M. (2001). Principles of Computerized Tomographic Imaging. Philadelphia, PA: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. (2007). Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107(1), 815.CrossRefGoogle ScholarPubMed
Ke, X., Bals, S., Cott, D., Hantschel, T., Bender, H. & Tendeloo, G.V. (2010). Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts. Microsc Microanal 16, 210217.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78(3), 031101/1–20.CrossRefGoogle ScholarPubMed
Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. & Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J Struct Biol 120(3), 276308.CrossRefGoogle ScholarPubMed
Kwakman, L., Franz, G., Klumpp, A. & Ramm, P. (2011). Characterization and failure analysis of 3D integrated systems using a novel plasma-FIB system. In Frontiers of Characterization and Metrology for Nanoelectronics, Seiler, D.G., Diebold, A., McDonald, R., Herr, D., Thompson, G. & Chabli, A. (Eds.). Grenoble, France: American Institute of Physics.Google Scholar
Kyrieleis, A., Ibison, M., Titarenko, V. & Withers, P.J. (2009). Image stitching strategies for tomographic imaging of large objects at high resolution at synchrotron sources. Nucl Instrum Methods Phys Res A 607(3), 677684.CrossRefGoogle Scholar
Langer, M. & Peyrin, F. (2010). A wavelet algorithm for zoom-in tomography. In Proceedings of the 2010 IEEE International Conference on Biomedical Imaging: From Nano to Macro, pp. 608611. Rotterdam.Google Scholar
Larson, D.J., Wissman, B.D., Martens, R.L., Villieux, R.J., Kelly, T.F., Gribb, T.T., Erskine, H.F. & Tabat, N. (2001). Advances in atom probe specimen fabrication from planar multilayer thin film structures. Microsc Microanal 7(1), 2431.CrossRefGoogle ScholarPubMed
Laurencin, J., Quey, R., Delette, G., Suhonen, H., Cloetens, P. & Bleuet, P. (2012). Characterisation of solid oxide fuel cell Ni-8YSZ substrate by synchrotron X-ray nano-tomography: From 3D reconstruction to microstructure quantification. J Power Sources 198, 182189.CrossRefGoogle Scholar
Lombardo, J.J., Ristau, R.A., Harris, W.M. & Chiu, W.K. (2012). Focused ion beam preparation of samples for X-ray nanotomography. J Synchrotron Radiat 19(5), 189196.CrossRefGoogle ScholarPubMed
Martinez-Criado, G., Tucoulou, R., Cloetens, P., Bleuet, P., Bohic, S., Cauzid, J., Kieffer, I., Kosior, E., Laboure, S., Petitgirard, S., Rack, A., Sans, J.A., Segura-Ruiz, J., Suhonen, H., Susini, J. & Villanova, J. (2012). Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility. J Synchrotron Radiat 19(1), 1018.CrossRefGoogle ScholarPubMed
McKenzie, Z.R., Marquis, E.Q. & Munroe, P.R. (2010). Focused ion beam sample preparation for atom probe tomography. In Microscopy: Science, Technology, Applications and Education, Díaz, A. M.-V. a. J. (Ed.), pp. 18001810.Google Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8(4), 271280.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.CrossRefGoogle ScholarPubMed
Miller, M.K. (2005). Sculpting needle-shaped atom probe specimens with a dual beam FIB. Microsc Microanal 11(Suppl 2), 808809CD.CrossRefGoogle Scholar
Miller, M.K., Kelly, T.F., Rajan, K. & Ringer, S.P. (2012). The future of atom probe tomography. Mater Today 15(4), 158165.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102(4), 287298.CrossRefGoogle ScholarPubMed
Möbus, G. & Inkson, B.J. (2007). Nanoscale tomography in materials science. Mater Today 10(12), 1825.CrossRefGoogle Scholar
Natterer, F. & Wübbeling, F. (2001). Mathematical Methods in Image Reconstruction. Philadelphia, PA: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Pacureanu, A., Langer, M., Boller, E., Tafforeau, P. & Peyrin, F. (2012). Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: Optimization of acquisition setup. Med Phys 39(4), 22292238.CrossRefGoogle ScholarPubMed
Peter, Z., Bleuet, P., Lafage-Proust, M.H. & Peyrin, F. (2006). Feasibility of three-dimensional imaging of the Lacuno-Canalicular network from synchrotron radiation micro-CT. In 17th International Bone Densitometry Workshop, Kyoto, Japan.Google Scholar
Petherbridge, J.R., Scott, T.B., Glascott, J., Younes, C., Allen, G.C. & Findlay, I. (2009). Characterisation of the surface over-layer of welded uranium by FIB, SIMS and Auger electron spectroscopy. J Alloys Comp 476(1-2), 543549.CrossRefGoogle Scholar
Quey, R., Suhonen, H., Laurencin, J., Cloetens, P. & Bleuet, P. (2013). Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode. Mater Charact 78, 8795.CrossRefGoogle Scholar
Randolph, S.J., Fowlkes, J.D. & Rack, P.D. (2006). Focused, nanoscale electron-beam-induced deposition and etching. Crit Rev Solid State Mater Sci 31(3), 5589.CrossRefGoogle Scholar
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer.CrossRefGoogle Scholar
Sasov, A.Y. (1987). Microtomography. J Microsc 147(2), 179192.CrossRefGoogle Scholar
Saxey, D.W., Cairney, J.M., McGrouther, D. & Ringer, S.P. (2006). Atom probe specimen fabrication methods using a dual FIB/SEM. In Vacuum Nanoelectronics Conference, 2006 and the 2006 50th International Field Emission Symposium., IVNC/IFES 2006. Technical Digest. 19th International, pp. 145146.Google Scholar
Scott, M.C., Chen, C.-C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C. & Miao, J. (2012). Electron tomography at 2.4-angstrom resolution. Nature 483(7390), 444447.CrossRefGoogle ScholarPubMed
Shearing, P.R., Gelb, J. & Brandon, N.P. (2010). X-ray nano computerised tomography of SOFC electrodes using a focused ion beam sample-preparation technique. J European Ceram Soc 30(8), 18091814.CrossRefGoogle Scholar
Shearing, P.R., Golbert, J., Chater, R.J. & Brandon, N.P. (2009). 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem Eng Sci 64(17), 39283933.CrossRefGoogle Scholar
Shepp, L.A. & Logan, B.F. (1974). The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 21, 2143.CrossRefGoogle Scholar
Shukla, N., Tripathi, S.K., Banerjee, A., Ramana, A.S.V., Rajput, N.S. & Kulkarni, V.N. (2009). Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe. Appl Surf Sci 256(2), 475479.CrossRefGoogle Scholar
Sousa, A.A., Hohmann-Marriott, M.F., Zhang, G. & Leapman, R.D. (2009). Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections. Ultramicroscopy 109(3), 213221.CrossRefGoogle ScholarPubMed
Spanne, P. & Rivers, M.L. (1987). Computerized microtomography using synchrotron radiation from the NSLS. Nucl Instrum Methods Phys Res B 24–25 (Pt 2), 10631067.CrossRefGoogle Scholar
Stock, S.R. (2008). Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3), 129181.CrossRefGoogle Scholar
Thompson, G.B., Miller, M.K. & Fraser, H.L. (2004). Some aspects of atom probe specimen preparation and analysis of thin film materials. Ultramicroscopy 100(1-2), 2534.CrossRefGoogle ScholarPubMed
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334), 374377.CrossRefGoogle ScholarPubMed
Vila-Comamala, J., Diaz, A., Guizar-Sicairos, M., Mantion, A., Kewish, C.M., Menzel, A., Bunk, O. & David, C. (2011). Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging. Opt Express 19(22), 2133321344.CrossRefGoogle ScholarPubMed
Vila-Comamala, J., Pan, Y., Lombardo, J., M. Harris, W., Chiu, W.K., David, C. & Wang, Y. (2012). Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy. J Synchrotron Radiat 19, 705709.CrossRefGoogle ScholarPubMed
Wei, K., Lin, B. & Tai, J. (2011). Copper pillar bump technology progress overview. In 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), pp. 15.Google Scholar
Weyland, M. & Midgley, P.A. (2003). Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc Microanal 9, 542555.CrossRefGoogle ScholarPubMed
Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B. & Barnett, S.A. (2006). Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7), 541544.CrossRefGoogle ScholarPubMed
Withers, P.J. (2007). X-ray nanotomography. Mater Today 10(12), 2634.CrossRefGoogle Scholar
Xiao, X., De Carlo, F. & Stock, S. (2008). X-ray zoom-in tomography of calcified tissue. In Proc SPIE 7078, Developments in X-ray Tomography VI, 707810. Google Scholar
Yaguchi, T., Konno, M., Kamino, T. & Watanabe, M. (2008). Observation of three-dimensional elemental distributions of a Si device using a 360 degrees tilt FIB and the cold field-emission STEM system. Ultramicroscopy 108(12), 16031615.CrossRefGoogle ScholarPubMed
Ziegler, J.F., Ziegler, M.D. & Biersack, J.P. (2010). SRIM—The stopping and range of ions in matter. Nucl Instrum Methods Phys Res B 268(11-12), 18181823.CrossRefGoogle Scholar