No CrossRef data available.
Article contents
solid-state reactions in the presence of an electric field
Published online by Cambridge University Press: 02 July 2020
Extract
It is well known that diffusion in ionic materials occurs primarily by the movement of charged species. Therefore, an electric field should provide a very powerful driving force for mass transport. In the present study, solid-state reactions, in the presence of an electric field, have been carried out between thin films of In2O3 and bulk monocrystalline MgO ﹛001﹜. In solid-state reactions of this type, reaction rates and interfacial stability are affected by the transport properties of the reacting ions. by applying an electric field across the sample, at elevated temperatures, the reaction rates and interfaces are affected as a result of ionic conductivity. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated, in this spinel forming system, to gain a better understanding of the influence of an electric field on interface morphology and solid-state reactions.
The reaction couples used in this study were produced by means of pulsed-laser deposition (PLD).
- Type
- Atomic Structure and Mechanisms at Interfaces in Materials
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 623 - 624
- Copyright
- Copyright © Microscopy Society of America 1997