No CrossRef data available.
Article contents
Simulation-Trained Machine Learning Models for Lorentz Microscopy
Published online by Cambridge University Press: 22 July 2022
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Artificial Intelligence, Instrument Automation, And High-dimensional Data Analytics for Microscopy and Microanalysis
- Information
- Copyright
- Copyright © Microscopy Society of America 2022
References
Fert, A. et al. Nature Reviews Materials, 2 (2017), p. 17031. doi:10.1038/natrevmats.2017.31CrossRefGoogle Scholar
Loudon, J. C. et al. Advanced Materials, 31 (2019), p. 1806598. doi:10.1002/adma.201806598CrossRefGoogle Scholar
McCray, A. et al. Physical Review Applied, 15 (2021), p. 044025. doi:10.1103/PhysRevApplied.15.044025CrossRefGoogle Scholar
This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.Google Scholar
You have
Access