Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T05:34:25.251Z Has data issue: false hasContentIssue false

A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes

Published online by Cambridge University Press:  25 February 2016

Stefano Rubino*
Affiliation:
Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
Sultan Akhtar
Affiliation:
Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden Centre for Advanced Studies in Physics, Government College University, Katchery Road, Lahore 54000, Pakistan
Klaus Leifer
Affiliation:
Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
*
*Corresponding author. [email protected]
Get access

Abstract

We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I0(t), as a function of the specimen thickness t (t<<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I0(0) and I0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3–4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

Type
Techniques, Software, and Equipment
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These authors have contributed equally to this work.

References

Aizawa, T., Souda, R., Otani, S., Ishizawa, Y. & Oshima, C. (1990). Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64(7), 768771.CrossRefGoogle ScholarPubMed
Boese, M., Kumar, S., O’neill, A., Lotya, M., Zhang, H.Z., Coleman, J.N. & Duesberg, G.S. (2010). A simple method to measure graphite thickness with monolayer precision using plasmon energy loss imaging. Microsc Microanal 16(Suppl 2), 15401541.CrossRefGoogle Scholar
Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K.S. & Ferrari, A.C. (2007). Rayleigh imaging of graphene and graphene layers. Nano Lett 7(9), 27112717.CrossRefGoogle ScholarPubMed
Chen, X.Q., Xu, Z.H., Li, X.D., Shaibat, M.A., Ishii, Y. & Ruoff, R.S. (2007). Structural and mechanical characterization of platelet graphite nanofibers. Carbon 45(2), 416423.CrossRefGoogle Scholar
Coraux, J., N’diaye, A.T., Busse, C. & Michely, T. (2008). Structural coherency of graphene on Ir(111). Nano Lett 8(2), 565570.CrossRefGoogle ScholarPubMed
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6(3), 183191.CrossRefGoogle ScholarPubMed
Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P.C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12), 26672673.CrossRefGoogle ScholarPubMed
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchinson, J., Scardaci, V., Ferrari, A.C. & Coleman, J.N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9), 563568.Google Scholar
Jia, X.T., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Romo-Herrera, J.M., Son, H.B., Hsieh, Y.P., Reina, A., Kong, J., Terrones, M. & Dresselhaus, M.S. (2009). Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 17011705.CrossRefGoogle ScholarPubMed
Jinschek, J.R., Yucelen, E., Calderon, H.A. & Freitag, B. (2011). Quantitative atomic 3-D imaging of single/double sheet graphene structure. Carbon 49, 556562.CrossRefGoogle Scholar
Jung, I., Pelton, M., Piner, R., Dikin, D.A., Stankovich, S., Watcharotone, S., Hausner, M. & Ruoff, R.S. (2007). Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett 7(12), 35693575.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.CrossRefGoogle ScholarPubMed
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J. & Roth, S. (2007). The structure of suspended graphene sheets. Nature 446, 6063.CrossRefGoogle ScholarPubMed
Nelson, F., Diebold, A.C. & Hull, R. (2010). Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking. Microsc Microanal 16, 194199.CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.CrossRefGoogle ScholarPubMed
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. & Geim, A.K. (2005). Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30), 1045110453.CrossRefGoogle ScholarPubMed
Park, S. & Ruoff, R.S. (2009). Chemical methods for the production of graphenes. Nat Nanotechnol 4(4), 217224.CrossRefGoogle ScholarPubMed
Plachinda, P., Rouvimov, S. & Solanki, R. (2011). Structure analysis of CVD graphene films based on HRTEM contrast simulations. Phys Status Solidi A 208, 26812687.CrossRefGoogle Scholar
Reimer, L. & Kohl, H. (2008). Theory of Electron Diffraction in Transmission Electron Microscopy: Physics of Image Formation. Munster: Springer Berlin/Heidelberg. pp. 272328.Google Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21(2), 131145.CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 15581565.CrossRefGoogle Scholar
Wang, G.X., Yang, J., Park, J., Gou, X.L., Wang, B., Liu, H. & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22), 81928195.CrossRefGoogle Scholar
Warner, J.H. (2010). The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy. Nanotechnology 21, 255707.CrossRefGoogle ScholarPubMed
Widenkvist, E., Boukhvalov, D.W., Rubino, S., Akhtar, S., Lu, J., Quinlan, R.A., Katsnelson, M.I., Leifer, K., Grennberg, H. & Jansson, U. (2009). Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene. J Phys D Appl Phys 42, 112003.CrossRefGoogle Scholar
Wu, Z.S., Ren, W.C., Gao, L.B., Liu, B.L., Jiang, C.B. & Cheng, H.M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493499.CrossRefGoogle Scholar