Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T08:49:15.543Z Has data issue: false hasContentIssue false

Selenium Segregation in Femtosecond-Laser Hyperdoped Silicon Revealed by Electron Tomography

Published online by Cambridge University Press:  10 April 2013

Georg Haberfehlner*
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Matthew J. Smith
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Juan-Carlos Idrobo
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Geoffroy Auvert
Affiliation:
STMicroelectronics, 850 Rue Jean Monnet, 38926 Crolles, France
Meng-Ju Sher
Affiliation:
Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Mark T. Winkler
Affiliation:
Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Eric Mazur
Affiliation:
Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Narciso Gambacorti
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Silvija Gradečak
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Pierre Bleuet
Affiliation:
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Doping of silicon with chalcogens (S, Se, Te) by femtosecond laser irradiation to concentrations well above the solubility limit leads to near-unity optical absorptance in the visible and infrared (IR) range and is a promising route toward silicon-based IR optoelectronics. However, open questions remain about the nature of the IR absorptance and in particular about the impact of the dopant distribution and possible role of dopant diffusion. Here we use electron tomography using a high-angle annular dark-field (HAADF) detector in a scanning transmission electron microscope (STEM) to extract information about the three-dimensional distribution of selenium dopants in silicon and correlate these findings with the optical properties of selenium-doped silicon. We quantify the tomography results to extract information about the size distribution and density of selenium precipitates. Our results show correlation between nanoscale distribution of dopants and the observed sub-band gap optical absorptance and demonstrate the feasibility of HAADF-STEM tomography for the investigation of dopant distribution in highly-doped semiconductors.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. & Bischof, L. (1994). Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16, 641647.CrossRefGoogle Scholar
Bals, S., Batenburg, K.J., Verbeeck, J., Sijbers, J. & Van Tendeloo, G. (2007). Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett 7, 36693674.CrossRefGoogle Scholar
Bals, S., Casavola, M., van Huis, M.A., Van Aert, S., Batenburg, K.J., Van Tendeloo, G. & Vanmaekelbergh, D.L. (2010). Three-dimensional atomic imaging of colloidal core-shell nanocrystals. Nano Lett 11, 34203424.CrossRefGoogle Scholar
Batenburg, K.J., Bals, S., Sijbers, J., Kübel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A. & Van Tendeloo, G. (2009). 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109, 730740.CrossRefGoogle ScholarPubMed
Carey, J.E., Crouch, C.H., Shen, M. & Mazur, E. (2005). Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett 30, 17731775.CrossRefGoogle ScholarPubMed
Duguay, S., Colin, A., Mathiot, D., Morin, P. & Blavette, D. (2010). Atomic-scale redistribution of dopants in polycrystalline silicon layers. J Appl Phys 108, 034911. CrossRefGoogle Scholar
Fernandez, J.-J. (2012). Computational methods for electron tomography. Micron 43, 10101030.CrossRefGoogle ScholarPubMed
Fernandez, J.J. & Sam, L. (2005). Anisotropic nonlinear filtering of cellular structures in cryoelectron tomography. Comput Sci Eng 7, 5461.CrossRefGoogle Scholar
Fernández-Busnadiego, R., Zuber, B., Maurer, U.E., Cyrklaff, M., Baumeister, W. & Lučić, V. (2010). Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J Cell Biol 188, 145156.CrossRefGoogle ScholarPubMed
Frangakis, A.S. & Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135, 239250.CrossRefGoogle ScholarPubMed
Gilbert, P. (1972). Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36, 105117.CrossRefGoogle ScholarPubMed
Goris, B., Bals, S., Van den Broek, W., Carbó-Argibay, E., Gómez-Graña, S., Liz-Marzán, L.M. & Van Tendeloo, G. (2012a). Atomic-scale determination of surface facets in gold nanorods. Nat Mater 11, 930935.CrossRefGoogle ScholarPubMed
Goris, B., Van den Broek, W., Batenburg, K.J., Heidari Mezerji, H. & Bals, S. (2012b). Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120130.CrossRefGoogle Scholar
Hyun, J.K., Ercius, P. & Muller, D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17.CrossRefGoogle ScholarPubMed
Jin, S., Jones, K.S., Law, M.E. & Camillo-Castillo, R. (2012). B segregation to grain boundaries and diffusion in polycrystalline Si with flash annealing. J Appl Phys 111, 044508. CrossRefGoogle Scholar
Kaneko, K., Inoke, K., Sato, K., Kitawaki, K., Higashida, H., Arslan, I. & Midgley, P.A. (2008). TEM characterization of Ge precipitates in an Al-1.6 at% Ge alloy. Ultramicroscopy 108, 210220.CrossRefGoogle Scholar
Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. (2007). Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 815.CrossRefGoogle ScholarPubMed
Ke, X., Bals, S., Cott, D., Hantschel, T., Bender, H. & Van Tendeloo, G. (2010). Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts. Microsc Microanal 16, 210217.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.CrossRefGoogle ScholarPubMed
Narasimha, R., Aganj, I., Bennett, A.E., Borgnia, M.J., Zabransky, D., Sapiro, G., McLaughlin, S.W., Milne, J.L.S. & Subramaniam, S. (2008). Evaluation of denoising algorithms for biological electron tomography. J Struct Biol 164, 717.CrossRefGoogle ScholarPubMed
Newman, B.K., Sullivan, J.T., Winkler, M.T., Sher, M.J., Marcus, M.A., Fakra, S., Smith, M.J., Gradečak, S., Mazur, E. & Buonassisi, T. (2009). Illuminating the mechanism for sub-bandgap absorption in chalcogen doped silicon materials for PV applications. In 24th European Photovoltaic Solar Energy Conference, pp. 236238.Google Scholar
Perona, P. & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12, 629639.CrossRefGoogle Scholar
Saghi, Z., Holland, D.J., Leary, R., Falqui, A., Bertoni, G., Sederman, A.J., Gladden, L.F. & Midgley, P.A. (2011). Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Lett 11, 46664673.CrossRefGoogle ScholarPubMed
Salvi, E., Cantele, F., Zampighi, L., Fain, N., Pigino, G., Zampighi, G. & Lanzavecchia, S. (2008). JUST (Java User Segmentation Tool) for semi-automatic segmentation of tomographic maps. J Struct Biol 161, 287297.CrossRefGoogle ScholarPubMed
Schierning, G., Theissmann, R., Stein, N., Petermann, N., Becker, A., Engenhorst, M., Kessler, V., Geller, M., Beckel, A., Wiggers, H. & Schmechel, R. (2011). Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J Appl Phys 110, 113515. CrossRefGoogle Scholar
Scott, M.C., Chen, C.-C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C. & Miao, J. (2012). Electron tomography at 2.4-angstrom resolution. Nature 483, 444447.CrossRefGoogle ScholarPubMed
Sheehy, M.A., Tull, B.R., Friend, C.M. & Mazur, E. (2007). Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B 137, 289294.CrossRefGoogle Scholar
Sher, M.J., Winkler, M.T. & Mazur, E. (2011). Pulsed-laser hyperdoping and surface texturing for photovoltaics. MRS Bull 36, 439445.CrossRefGoogle Scholar
Smith, M., Winkler, M., Sher, M.-J., Lin, Y.-T., Mazur, E. & Gradečak, S. (2011a). The effects of a thin film dopant precursor on the structure and properties of femtosecond-laser irradiated silicon. Appl Phys A 105, 795800.CrossRefGoogle Scholar
Smith, M.J., Lin, Y.-T., Sher, M.-J., Winkler, M.T., Mazur, E. & Gradečak, S. (2011b). Pressure-induced phase transformations during femtosecond-laser doping of silicon. J Appl Phys 110, 053524. CrossRefGoogle Scholar
Smith, M.J., Sher, M.-J., Franta, B., Lin, Y.-T., Mazur, E. & Gradečak, S. (2012). The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation. J Appl Phys 112, 083518. CrossRefGoogle Scholar
Thompson, K., Booske, J.H., Larson, D.J. & Kelly, T.F. (2005). Three-dimensional atom mapping of dopants in Si nanostructures. Appl Phys Lett 87, 052108. CrossRefGoogle Scholar
Tull, B., Winkler, M. & Mazur, E. (2009). The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Appl Phys A 96, 327334.CrossRefGoogle Scholar
Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P. & Yalisove, S.M. (2006). Silicon surface morphologies after femtosecond laser irradiation. MRS Bull 31, 626633.CrossRefGoogle Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374377.CrossRefGoogle ScholarPubMed
Van Aert, S., Verbeeck, J., Erni, R., Bals, S., Luysberg, M., Dyck, D.V. & Tendeloo, G.V. (2009). Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 109, 12361244.CrossRefGoogle ScholarPubMed
Van den Broek, W., Rosenauer, A., Goris, B., Martinez, G.T., Bals, S., Van Aert, S. & Van Dyck, D. (2012). Correction of non-linear thickness effects in HAADF STEM electron tomography. Ultramicroscopy 116, 812.CrossRefGoogle Scholar
Volkmann, N. (2002). A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J Struct Biol 138, 123129.CrossRefGoogle ScholarPubMed
Vydyanath, H.R., Lorenzo, J.S. & Kroger, F.A. (1978). Defect pairing diffusion, and solubility studies in selenium-doped silicon. J Appl Phys 49, 59285937.CrossRefGoogle Scholar
Wu, C., Crouch, C.H., Zhao, L., Carey, J.E., Younkin, R., Levinson, J.A., Mazur, E., Farrell, R.M., Gothoskar, P. & Karger, A. (2001). Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78, 18501852.CrossRefGoogle Scholar
Yaguchi, T., Konno, M., Kamino, T. & Watanabe, M. (2008). Observation of three-dimensional elemental distributions of a Si device using a 360°-tilt FIB and the cold field-emission STEM system. Ultramicroscopy 108, 16031615.CrossRefGoogle Scholar
Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A. & Friend, C.M. (2003). Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J Appl Phys 93, 26262629.CrossRefGoogle Scholar

Haberfehlner supplementary movie 1

Haberfehlner supplementary movie 1

Download Haberfehlner supplementary movie 1(Video)
Video 6 MB

Haberfehlner supplementary movie 2

Haberfehlner supplementary movie 2

Download Haberfehlner supplementary movie 2(Video)
Video 3.9 MB
Supplementary material: PDF

Haberfehlner supplementary material

Haberfehlner supplementary material

Download Haberfehlner supplementary material(PDF)
PDF 2.1 MB