Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T17:03:20.222Z Has data issue: false hasContentIssue false

Seasonal Variations in the Digestive Tract of the Little Owl, Athene noctua: Anatomical, Histological, and Scanning Electron Microscopical Studies

Published online by Cambridge University Press:  25 March 2022

Nahed A. Shawki
Affiliation:
Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
Fatma A. Mahmoud
Affiliation:
Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
Mayada Y. Mohamed*
Affiliation:
Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
*
*Corresponding author: Mayada Y. Mohamed, E-mail: [email protected]
Get access

Abstract

The digestive tract of the little owl, Athene noctua (Strigiformes: Strigidae), is described in two different seasons. The digestive tract of this bird follows the basic model for that of a predatory bird. The cervical esophagus is not expanded to form a crop. The internal surface of the esophagus forms numerous longitudinal folds provided with numerous mucous glands. These longitudinal folds increase in number and vary in depth posteriorly. The folds of the proventriculus are composed of simple branched tubular glands. The ventriculus is lined by a thin layer of koilin. The number of goblet cells gradually increases from the duodenum to the rectum, and the lymphatic tissue diffuses within the lamina propria. The esophageal glands secrete acid mucopolysaccharides, while the gastric glands of the stomach, the goblet cells, and crypts of Lieberkühn secrete acid mucopolysaccharides. Proteins were observed in the different histological structures of the digestive tract. Morphometric and histometric studies showed differences between summer and winter in the esophagus and glandular stomach (especially in winter), but no seasonal differences were seen in the muscular stomach, or small and large intestines.

Type
Micrographia
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abumandour, MM (2013). Morphological studies of the stomach of falcon. Sci J Vet Adv 2, 3040.Google Scholar
AL-Juboury, RW (2015). Comparative anatomical and histological study on the digestive tract in two Iraqi birds, common wood pigeon Colimba palumbus (L.) and barn owl Tyto alba (Scopoli). PhD Thesis. Bab. Univ., p. 157.Google Scholar
Alshamy, Z, Richardson, K, Hunigen, H, Mohamed, H, Plendl, J & Al Masri, S (2018). Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PLoS ONE. doi: 10.1371/journal.pone.0204921.CrossRefGoogle ScholarPubMed
Altamirano, F, Avila, R, Samar, ME & de Fabro, SP (1984). Cytochemical characterization of mucosubstances in the chick glandular stomach during embryonary and postnatal development Folia Histochem Cytobiol 22, 105111.Google ScholarPubMed
Amininasab, SM, Birker, M, Kingma, SA, Hildenbrandt, H & Komdeur, J (2017). The effect of male incubation feeding on female nest attendance and reproductive performance in a socially monogamous bird. J Ornithol 158, 687696. doi:10.1007/s10336-016-1427-2CrossRefGoogle Scholar
Bacha, WJ & Bacha, LM (2003). Atlas Colorido de Histologiaveterinária. 2nd ed. São Paulo, Brasil: Roca, p. 457.Google Scholar
Bancroft, JD & Stevens, A (1996). Theory and Practice of Histological Techniques, 4th ed. New York: Churchill Livingstone, Chap. 10, pp. 190191.Google Scholar
Chikihan, M & De Speroni, NB (1996). Comparative study of the digestive system of three species of tinamou. I. Crypturellus tataupa, Nothoprocta cinerascens, and Nothura maculosa (Aves: tinamidae). J Morphol 228, 7788. doi:10.1002/(SICI)1097-4687(199604)228:1<77:AID-JMOR6>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle Scholar
Cummins, J (1996). Overview of bird digestion. Available at http://numbat.Murdoch.edu.au/anatomy/avian/avian4-Toc.Google Scholar
Dellmann, HD & Eurell, J (2006). Textbook of Veterinary Histology, 6th ed. UK: Blackwell Publishing.Google Scholar
Ding, Y, Zhou, R, Wang, C, Lu, K & Lu, S (2018). Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness. Bioresour Technol 268, 7780. doi:10.1016/j.biortech.2018.07.134.CrossRefGoogle ScholarPubMed
Drury, ARB & Wallington, EA (1980). Carleton's Histological Technique, 5th ed. London: Oxford University Press. Chap. 13, pp. 254255.Google Scholar
Duke, GE (1997). Gastrointestinal physiology and nutrition in wild birds. Proc Nutr Soc 56, 10491056. doi:10.1079/pns19970109.CrossRefGoogle ScholarPubMed
El-mansi, AA, El-bealy, EA, Rady, AM, Abumandour, MMA & El-badry, DA (2021). Macro-and microstructures of the digestive tract in the Eurasian collared dove, Streptopelia decaocto (Frivaldszky 1838): Adaptive interplay between structure and dietary niche. Microsc Res Tech 12, 28372856. doi:10.1002/jemt.23843.CrossRefGoogle Scholar
Fuller, MR & Duke, GE (1978). Regulation of pellet egestion: The effects of multiple feedings on meal to pellet intervals in Great Horned Owls. Comp Biochem Physiol 62, 439444.CrossRefGoogle Scholar
Gelis, S (2013). Evaluation and treating the gastrointestinal system. Clin Avian Med 1, 412416.Google Scholar
Goodarzi, N, Akbari Bazm, M, Poladi, S, Rashidi, F, Mahmoudi, B & Abumandour, MM (2021). Histology of the small intestine in the common pheasant (Phasianus colchicus): A scanning electron microscopy, histochemical, immunohistochemical, and stereological study. Microsc Res Tech 10, 23882398. doi:10.1002/jemt.23794.CrossRefGoogle Scholar
Hamdi, H, El- Ghareeb, AW, Zaher, M & AbuAmod, F (2013). Anatomical, histological and histochemical adaptations of the avian alimentary canal to their food habits: II- Elanus caeruleus. Int J Scient Eng Res 4, 13551364.Google Scholar
Hanafy, BG, Abumandour, MMA & Bassuoni, NF (2020). Morphological features of the gastrointestinal tract of Garganey (Anas querquedula, Linnaeus 1758)—Oesophagus to coprodeum. Anat Histol Embryol 49, 233250.CrossRefGoogle ScholarPubMed
Hanafy, BG, Abumandour, MMA, Kandyel, RM & Bassuoni, NF (2021). Ultrastructural characterization of the intestine of the Eurasian common moorhen using scanning electron microscopy and light microscopy. Microsc Res Tech 1, 106116. doi:10.1002/jemt.23888.Google Scholar
Harrison, XA, Blount, JD, Inger, R, Norris, DR & Bearhop, S (2011). Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80, 418. doi:10.1111/j.13652656.2010.01740.x.CrossRefGoogle ScholarPubMed
Ibrahim, LA (1992). Topography and morphology of the esophagus and stomach in fowl, duck, pigeon, dove, quail, heron and jackdaw. Assiut Vet Méd J 28, 1334.Google Scholar
Karasov, WH & Martinez del Rio, C (2007). How Animals Process Energy, Nutrients, and Toxins. Princeton: Princeton University Press. Physiological ecology, p. 741.CrossRefGoogle Scholar
Karasov, WH, Martinez Del Rio, C & Caviedes-Vidal, E (2011). Ecological physiology of diet and digestive systems. Annu Rev Physiol 73, 6993. doi:10.1146/annurev-physiol-012110-142152.CrossRefGoogle ScholarPubMed
Klaphake, E & Clancy, J (2005). Raptor gastroenterology. Vet Clin Exot Anim 8, 307327. doi:10.1016/j.cvex.2005.01.005.CrossRefGoogle ScholarPubMed
Klasing, KC (1999). Avian gastrointestinal anatomy and physiology. Semin Avian Exot Pet Med 8, 4250. doi:10.1016/S1055-937X(99)80036-X.CrossRefGoogle Scholar
Kostuch, TE & Duke, GE (1975). Gastric motility in great horned owls (Bubo virginianus). Comp Biochem Physiol 51, 201205.CrossRefGoogle Scholar
Lewis, D (2013). “Little Owl: Athene noctua”. The Owl Pages. Partners. Available at: https://www.google.com. Retrieved 15 October 2015.Google Scholar
Ma, GT (2009). Morphological and histological observation on the esophagus and stomach of Tetraogallus himalayensis. Chin J Zool 44, 124127.Google Scholar
Maneewan, B & Yamauchi, K (2003). Effects of semi-purified pellet diet on the chicken intestinal villus histology. Poult Sci 40, 254266.CrossRefGoogle Scholar
McLelland, J (1991). A Color Atlas of Avian Anatomy. Philadelphia: W.B. Saunders, pp. 4765.Google Scholar
Mot, M (2010). Morphological aspects of digestive apparatusin owl (Asio flammeus) and dove (Columba livia). Lucr Stiinlifice Med Vet 44, 364367.Google Scholar
Naya, DE, Karasov, WH & Bozinovic, F (2007). Phenotypic plasticity in laboratory mice and rats: A meta-analysis of current ideas on gut size flexibility. Evol Ecol Res 9, 13631374.Google Scholar
Oliveira, AFG, Scapinello, C, Maria, BG, Jobim, CC, Monteiro, AC, Furuta, L & Ferreira, WM (2008). Use of simplify diet with cassava by products for rabbits. In Proc. 9th World Rabbit Congress, Verona, Italy, pp. 775–779.Google Scholar
Rajabi, E & Nabipour, A (2009). Histological study on the oesophagus and crop in various species of wild bird. Avian Biol Res 2, 161164.CrossRefGoogle Scholar
Sagsöz, H & Liman, N (2009). Structure of the oesophagus and morphometric, histochemical-immunohistochemical profiles of the oesophageal gland during the post-hatching period of Japanese quails (Coturnix coturnix japonica). Anat Histol Embryol 38, 330340. doi:10.1111/j.14390264.2009.009.x.CrossRefGoogle Scholar
Staggenborg, J, Martin, HS, Stange, C, Daenzer, BN & Grueebler, MU (2017). Time and travelling costs during chick rearing in relation to habitat quality in Little Owls Athene noctua. Int J Avian Sci 159(3), 519531. doi:10.1111/ibi.12465.Google Scholar
Starck, JM (1999). Phenotypic flexibility of the avian gizzard. Acta Ornithol 34, 149153.Google Scholar
Taki-El-Deen, F (2017). Histological and histochemical studies on the alimentary canal of spur-winged lapwing Vanellus spinosus, Egypt. J Hosp Med 67, 314321. doi:10.12816 / 0036642.Google Scholar
Tivane, C (2008). A morphological study of the oropharynx and oesophagus of the ostrich (Struthio camelus). MSc Dissertation, University of Pretoria, South Africa. Available at http://hdl.handle.net/2263/30388.Google Scholar
Yamauchi, K, Isshiki, Y, Zhou, Z-X & Nakahiro, Y (1990). Scanning and transmission electron microscopic observations of bacteria adhering to ileal epithelial cells in growing broiler and White Leghorn chickens. Br Poultry Sci 31, 129137.CrossRefGoogle ScholarPubMed
Zhu, L (2015). Histological and histochemical study on the stomach (Proventriculus and Gizzard) of black-tailed crake (Porzana bicolor). Pakistan J Zool 47, 607616.Google Scholar
Ziswiler, V (1967). Die taxonomische Stellung des Schneefinken Montifringilla nivalis (Linnaeus). Orn Beob 64, 105110. In German.Google Scholar