Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T16:26:21.035Z Has data issue: false hasContentIssue false

Scanning Photoemission Spectromicroscopic Study of 4-nm Ultrathin SiO3.4 Protrusions Probe-Induced on the Native SiO2 Layer

Published online by Cambridge University Press:  11 October 2011

Rupesh S. Devan
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
Shun-Yu Gao
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
Yu-Rong Lin
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
Shun-Rong Cheng
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
Chia-Er Hsu
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
Chia-Hao Chen
Affiliation:
National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan, Republic of China
Hung-Wei Shiu
Affiliation:
National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan, Republic of China
Yung Liou
Affiliation:
Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
Yuan-Ron Ma*
Affiliation:
Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Atomic force microscopy probe-induced large-area ultrathin SiOx (x ≡ O/Si content ratio and x > 2) protrusions only a few nanometers high on a SiO2 layer were characterized by scanning photoemission microscopy (SPEM) and X-ray photoemission spectroscopy (XPS). SPEM images of the large-area ultrathin SiOx protrusions directly showed the surface chemical distribution and chemical state specifications. The peak intensity ratios of the XPS spectra of the large-area ultrathin SiOx protrusions provided the elemental quantification of the Si 2p core levels and Si oxidation states (such as the Si4+, Si3+, Si2+, and Si1+ species). The O/Si content ratio (x) was evidently determined by the height of the large-area ultrathin SiOx protrusions.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ade, H., Kirz, J., Hulbert, S.L., Johnson, E.D., Anderson, E. & Kern, D. (1990a). X-ray spectromicroscopy with a zone plate generated microprobe. Appl Phys Lett 56, 18411843.CrossRefGoogle Scholar
Ade, H., Kirz, J., Hulbert, S., Johnson, E., Anderson, E. & Kern, D. (1990b). Scanning photoelectron microscope with a zone plate generated microprobe. Nucl Instrum Methods Phys Res A 291, 126131.CrossRefGoogle Scholar
Balestra, F. (2008). New semiconductor devices. Acta Phys Pol A 114, 945974.CrossRefGoogle Scholar
Chang, C.-Y., Chen, C.-C., Lin, H.-C., Liang, M.-S., Chien, C.-H. & Huang, T.-Y. (1999). Reliability of ultrathin gate oxides for ULSI devices. Microelectron Reliab 39, 553566.CrossRefGoogle Scholar
Chen, C.-H., Wang, S.-C., Yeh, C.-M., Hwang, J. & Klauser, R. (2005). A scanning photoelectron microscopy study of AIN/SixNy insulating stripes. Surf Sci 599, 107112.CrossRefGoogle Scholar
Chen, L.Q., Chan-Park, M.B., Yan, Y.H., Zhang, Q., Li, C.M. & Zhang, J. (2007). High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask. Nanotechnology 18, 355307.CrossRefGoogle Scholar
Choi, W.K., Poon, F.W., Loh, F.C. & Tan, K.L. (1997). X-ray photoelectron spectroscopy study of rapid thermal annealed silicon-silicon oxide systems. J Appl Phys 81, 73867391.CrossRefGoogle Scholar
Chuang, T.J., Chan, Y.L., Chuang, P., Klauser, R., Ko, C.-H. & Wei, D.-H. (2001). Surface chemistry: From vibrational spectroscopy to photoemission spectromicroscopy. Appl Surf Sci 169170, 110.CrossRefGoogle Scholar
Clerc, R., Devoivre, T., Ghibaudo, G., Caillat, C., Guégan, G., Reimbold, G. & Pananakakis, G. (2000). Capacitance-voltage (C-V) characterization of 20 angstrom thick gate oxide: Parameter extraction and modeling. Microelectron Reliab 40, 571575.CrossRefGoogle Scholar
Eickhoff, T., Medicherla, V. & Drube, W. (2004). Final state contribution to the Si 2p binding energy shift in SiO2/Si(100). J Electron Spectros Relat Phenom 137140, 8588.CrossRefGoogle Scholar
Goguenheim, D., Pic, D. & Ogier, J.L. (2007). Oxide reliability below 3 nm for advanced CMOS: Issues, characterization, and solutions. Microelectron Reliab 47, 13221329.CrossRefGoogle Scholar
Gómez-Moñivas, S., Sáenz, J.J., Calleja, M. & García, R. (2003). Field-induced formation of nanometer-sized water bridges. Phys Rev Lett 91, 056101.CrossRefGoogle ScholarPubMed
Grunthaner, P.J., Hecht, M.H., Grunthaner, F.J. & Johnson, N.M. (1987). The localization and crystallographic dependence of Si suboxide species at the SiO2/Si interface. J Appl Phys 61, 629638.CrossRefGoogle Scholar
Himpsel, F.J., McFeely, F.R., Tabeb-Ibrahimi, A., Yarmoff, J.A. & Hollinger, G. (1988). Microscopic structure of the SiO2/Si interface. Phys Rev B 38, 60846096.CrossRefGoogle ScholarPubMed
Hong, I.H., Lee, T.H., Yin, G.C., Wei, D.H., Juang, J.M., Dann, T.E., Klauser, R., Chuang, T.J., Chen, C.T. & Tsang, K.L. (2001). Performance of the SRRC scanning photoelectron microscope. Nucl Instrum Methods Phys Res A 467468, 905908.CrossRefGoogle Scholar
Hong, S.H., Zhu, J. & Mirkin, C.A. (1999). Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523525.CrossRefGoogle Scholar
Hull, R., Floro, J., Grahama, J., Gray, J., Gherasimova, M., Portavoce, A. & Ross, F.M. (2008). Synthesis and functionalization of epitaxial quantum dot nanostructures for nanoelectronic architectures. Mater Sci Semicond Process 11, 160168.CrossRefGoogle Scholar
Jang, J.-W., Maspoch, D., Fujigaya, T. & Mirkin, C.A. (2007). A “molecular eraser” for dip-pen nanolithography. Small 3, 600605.CrossRefGoogle Scholar
Klauser, R., Hong, I.-H., Su, H.-J., Chen, T.T., Gwo, S., Wang, S.-C., Chuang, T.J. & Gritsenko, V.A. (2001). Oxidation states in scanning-probe-induced Si3N4 to SiOx conversion studied by scanning photoemission microscopy. Appl Phys Lett 79, 31433145.CrossRefGoogle Scholar
Ko, C.-H., Klauser, R., Wei, D.-H., Chan, H.-H. & Chuang, T.J. (1998). The soft X-ray scanning photoemission microscopy project at SRRC. J Synchrotron Rad 5, 299304.CrossRefGoogle ScholarPubMed
Kokonou, M. & Nassiopoulou, A.G. (2007). Nanostructuring Si surface and Si/SiO2 interface using porous-alumina-on-Si template technology. Electrical characterization of Si/SiO2 interface. Physica E 38, 15.CrossRefGoogle Scholar
Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C. & Mrksich, M. (2002). Protein nanoarrays generated by dip-pen nanolithography. Science 295, 17021705.CrossRefGoogle ScholarPubMed
Lu, Y.-S., Wu, H.-I., Wu, S.Y. & Ma, Y.-R. (2007). Tip-induced large-area oxide bumps and composition stoichiometry test via atomic force microscopy. Surf Sci 601, 37883791.CrossRefGoogle Scholar
Ma, Y.-R., Yu, C., Yao, Y.-D., Liou, Y. & Lee, S.-F. (2001). Tip-induced local anodic oxidation on the native SiO2 layer of Si(111) using an atomic force microscope. Phys Rev B 64, 195324.CrossRefGoogle Scholar
Marsi, M., Casalis, L., Gregoratti, L., Günther, S., Kolmakov, A., Kovac, J., Lonza, D. & Kiskinova, M. (1997). ESCA Microscopy at ELETTRA: What it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source. J Electron Spectrosc Relat Phenom 84, 7383.CrossRefGoogle Scholar
Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. & Timp, G. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758761.CrossRefGoogle Scholar
Oh, J.H., Nakamura, K., Ono, K., Oshima, M., Hirashita, N., Niwa, M., Toriumi, A. & Kakizaki, A. (2001a). Initial oxidation features of Si(100) studied by Si 2p core-level photoemission spectroscopy. J Electron Spectrosc Relat Phenom 114116, 395399.CrossRefGoogle Scholar
Oh, J.H., Yeom, H.W., Hagimoto, Y., Ono, K., Oshima, M., Hirashita, N., Nywa, M., Toriumi, A. & Kakizaki, A. (2001b). Chemical structure of the ultrathin SiO2/Si(100) interface: An angle-resolved Si 2p photoemission study. Phys Rev B 63, 205310.CrossRefGoogle Scholar
Orians, A., Clemons, C.B., Golovaty, D. & Young, G.W. (2006). One-dimensional dynamics of nano-scale oxidation. Surf Sci 600, 32973312.CrossRefGoogle Scholar
Piner, R.D., Zhu, J., Xu, F., Hong, S. & Mirkin, C.A. (1999). “Dip-pen” nanolithography. Science 283, 661663.CrossRefGoogle ScholarPubMed
Somorjai, G.A., Tao, F. & Park, J.Y. (2008). The nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics. Top Catal 47, 12.CrossRefGoogle Scholar
Timp, G., Bude, J., Baumann, F., Bourdelle, K.K., Boone, T., Garno, J., Ghetti, A., Green, M., Gossmann, H., Kim, Y., Kleiman, R., Kornblit, A., Klemens, F., Moccio, S., Muller, D., Rosamilia, J., Silverman, P., Sorsch, T., Timp, W., Tennant, D., Tung, R. & Weir, B. (2000). The relentless march of the MOSFET gate oxide thickness to zero. Microelectron Reliab 40, 557562.CrossRefGoogle Scholar
Troudi, M., Sghaier, N., Kalboussi, A. & Souifi, A. (2010). Analysis of photogenerated random telegraph signal in single electron detector (photo-SET). Opt Express 18, 19.CrossRefGoogle ScholarPubMed