Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T00:49:05.607Z Has data issue: false hasContentIssue false

Scanning Confocal Electron Energy-Loss Microscopy Using Valence-Loss Signals

Published online by Cambridge University Press:  22 May 2013

Huolin L. Xin*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
Christian Dwyer
Affiliation:
Monash Centre for Electron Microscopy, ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, Vic. 3800, Australia
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
Haimei Zheng
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
Peter Ercius*
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
*
*Corresponding author. E-mail: [email protected]
**Corresponding author. E-mail: [email protected]
Get access

Abstract

Finding a faster alternative to tilt-series electron tomography is critical for rapidly evolving fields such as the semiconductor industry, where failure analysis could greatly benefit from higher throughput. We present a theoretical and experimental evaluation of scanning confocal electron energy-loss microscopy (SCEELM) using valence-loss signals, which is a promising technique for the reliable reconstruction of materials with sub-10-nm resolution. Such a confocal geometry transfers information from the focused portion of the electron beam and enables rapid three-dimensional (3D) reconstruction by depth sectioning. SCEELM can minimize or eliminate the missing-information cone and the elongation problem that are associated with other depth-sectioning image techniques in a transmission electron microscope. Valence-loss SCEELM data acquisition is an order of magnitude faster and requires little postprocessing compared with tilt-series electron tomography. With postspecimen chromatic aberration (Cc) correction, SCEELM signals can be acquired in parallel in the direction of energy dispersion with the aid of a physical pinhole. This increases the efficiency by 10×–100×, and can provide 3D resolved chemical information for multiple core-loss signals simultaneously.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batson, P.E. (1993). Symmetry-selected electron-energy-loss scattering in diamond. Phys Rev Lett 70, 18221825.Google ScholarPubMed
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Angstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos Trans R Soc London, Ser A 367, 38253844.Google Scholar
Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge, UK: Cambridge University Press.Google Scholar
Bosman, M., Keast, V., García-Muñoz, J., D'Alfonso, A., Findlay, S. & Allen, L. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102. Google Scholar
Botton, G.A., Lazar, S. & Dwyer, C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110, 926934.Google Scholar
Cosgriff, E.C., D'Alfonso, A.J., Allen, L.J., Findlay, S.D., Kirkland, A.I. & Nellist, P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: Elastic scattering. Ultramicroscopy 108, 15581566.Google Scholar
Couillard, M., Radtke, G., Knights, A.P. & Botton, G.A. (2011). Three-dimensional atomic structure of metastable nanoclusters in doped semiconductors. Phys Rev Lett 107, 186104. Google Scholar
Cox, I.J., Sheppard, C.J.R. & Wilson, T. (1982). Super-resolution by confocal fluorescent microscopy. Optik (Stuttgart) 60, 391396.Google Scholar
D'Alfonso, A.J., Cosgriff, E.C., Findlay, S.D., Behan, G., Kirkland, A.I., Nellist, P.D. & Allen, L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.CrossRefGoogle ScholarPubMed
D'Alfonso, A.J., Findlay, S.D., Oxley, M.P., Pennycook, S.J., van Benthem, K. & Allen, L.J. (2007). Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 1728.Google Scholar
Dwyer, C. (2005). Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141151.Google Scholar
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.Google Scholar
Ercius, P., Weyland, M., Muller, D.A. & Gignac, L.M. (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116. Google Scholar
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.Google Scholar
Hashimoto, A., Mitsuishi, K., Shimojo, M., Zhu, Y. & Takeguchi, M. (2011). Experimental examination of the characteristics of bright-field scanning confocal electron microscopy images. J Electron Microsc 60(3), 227234.Google Scholar
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106, 086101. Google Scholar
Hashimoto, A., Wang, P., Shimojo, M., Mitsuishi, K., Nellist, P.D., Kirkland, A.I. & Takeguchi, M. (2012). Three-dimensional analysis of nanoparticles on carbon support using aberration-corrected scanning confocal electron microscopy. Appl Phys Lett 101, 253108. Google Scholar
Hovden, R., Xin, H.L. & Muller, D.A. (2011). Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc Microanal 17, 7580.Google Scholar
Howie, A. (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc R Soc London, Ser A 271, 268287.Google Scholar
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 14541466.Google Scholar
Kohl, H. & Rose, H. (1985). Theory of image-formation by inelastically scattered electrons in the electron microscope. Adv Electron El Phys 65, 173227.Google Scholar
Kourkoutis, L.F., Xin, H.L., Higuchi, T., Hotta, Y., Lee, J.H., Hikita, Y., Schlom, D.G., Hwang, H.Y. & Muller, D.A. (2010). Atomic-resolution spectroscopic imaging of oxide interfaces. Philos Mag 90, 47314749.Google Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F. & Szilagyi, Z. (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229237.Google Scholar
Li, H.Y., Xin, H.L., Muller, D.A. & Estroff, L.A. (2009). Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 12441247.Google Scholar
Lupini, A.R. & de Jonge, N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17, 817826.Google Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.CrossRefGoogle ScholarPubMed
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413431.CrossRefGoogle ScholarPubMed
Mitsuishi, K., Hashimoto, A., Takeguchi, M., Shimojo, M. & Ishizuka, K. (2010). Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy. Ultramicroscopy 111, 2026.Google Scholar
Muller, D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.Google Scholar
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59, 195213.Google Scholar
Ramachandra, R. & de Jonge, N. (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18, 218228.Google Scholar
Rose, H. (1976a). Image formation by inelastically scattered electrons in electron microscopy. Optik (Stuttgart) 45, 139158.Google Scholar
Rose, H. (1976b). Image formation by inelastically scattered electrons in electron microscopy II. Optik (Stuttgart) 45, 187208.Google Scholar
Sheppard, C.J.R. (1986a). The spatial-frequency cutoffs in 3-dimensional imaging. Optik 72, 131133.Google Scholar
Sheppard, C.J.R. (1986b). The spatial-frequency cutoffs in 3-dimensional imaging II. Optik 74, 128129.Google Scholar
Sheppard, C.J.R. & Choudhury, A. (1977). Image formation in the scanning microscope. Optica Acta 24, 10511073.Google Scholar
Streibl, N. (1985). Three-dimensional imaging by a microscope. J Opt Soc Am A 2, 121127.CrossRefGoogle Scholar
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K. & Furuya, K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc (Tokyo) 57, 123127.Google Scholar
Tan, H., Turner, S., Yücelen, E., Verbeeck, J. & Van Tendeloo, G. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602. Google Scholar
Wang, P., Behan, G., Kirkland, A.I., Nellist, P.D., Cosgriff, E.C., D'Alfonso, A.J., Morgan, A.J., Allen, L.J., Hashimoto, A. & Takeguchi, M. (2011). Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Ultramicroscopy 111(7), 877886.Google Scholar
Wang, P., Behan, G., Takeguchi, M., Hashimoto, A., Mitsuishi, K., Shimojo, M., Kirkland, A.I. & Nellist, P.D. (2010). Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys Rev Lett 104, 200801. Google Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008a). Controlling channeling effects in aberration-corrected STEM tomography. Microsc Microanal 14, 926927.Google Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008b). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125. Google Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58, 157165.Google Scholar
Xin, H.L. & Muller, D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.Google Scholar
Xin, H.L., Mundy, J.A., Liu, Z., Cabezas, R., Hovden, R., Kourkoutis, L.F., Zhang, J., Subramanian, N.P., Makharia, R., Wagner, F.T. & Muller, D.A. (2011). Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12, 490497.Google Scholar
Supplementary material: PDF

Xin Supplementary Material

Xin Supplementary Material

Download Xin Supplementary Material(PDF)
PDF 281.7 KB