Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T00:13:11.114Z Has data issue: false hasContentIssue false

Quantitative Fluctuation Electron Microscopy in the STEM: Methods to Identify, Avoid, and Correct for Artifacts

Published online by Cambridge University Press:  17 July 2014

Tian T. Li
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, USA Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801, USA
Stephanie N. Bogle
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, USA Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801, USA Global Climate Change Office, U.S. Agency for International Development, Washington, DC 20523, USA
John R. Abelson*
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, USA Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Fluctuation electron microscopy can reveal the nanoscale order in amorphous materials via the statistical variance in the scattering intensity as a function of position, scattering vector, and resolution. However, several sources of experimental artifacts can seriously affect the magnitude of the variance peaks. The use of a scanning transmission electron microscope for data collection affords a convenient means to check whether artifacts are present. As nanodiffraction patterns are collected in serial, any spatial or temporal dependence of the scattering intensity across the series can easily be detected. We present examples of the major types of artifact and methods to correct the data or to avoid the problem experimentally. We also re-cast the statistical formalism used to identify sources of noise in view of the present results. The present work provides a basis on which to perform fluctuation electron microscopy with a high level of reliability and confidence in the quantitative magnitude of the data.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biswas, P., Atta-Fynn, R., Chakraborty, S. & Drabold, D.A. (2007). Real space information from fluctuation electron microscopy: Application to amorphous silicon. J Phys Condens Matter 19(45), 455202.CrossRefGoogle Scholar
Bogle, S.N., Nittala, L.N., Twesten, R.D., Voyles, P.M. & Abelson, J.R. (2010). Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy. Ultramicroscopy 110(10), 12731278.CrossRefGoogle Scholar
Bogle, S.N., Voyles, P.M., Khare, S.V. & Abelson, J.R. (2007). Quantifying nanoscale order in amorphous materials: Simulating fluctuation electron microscopy of amorphous silicon. J Phys Condens Matter 19(45), 455204.CrossRefGoogle Scholar
Cheng, J.-Y., Gibson, J.M., Baldo, P.M. & Kestel, B.J. (2002). Quantitative analysis of annealing-induced structure disordering in ion-implanted amorphous silicon. J Vac Sci Tech A 20(6), 18551859.CrossRefGoogle Scholar
Cheng, J.Y., Gibson, J.M. & Jacobson, D.C. (2001). Observations of structural order in ion-implanted amorphous silicon. J Mater Res 16(11), 30303033.CrossRefGoogle Scholar
Darmawikarta, K., Lee, B.S., Shelby, R.M., Raoux, S., Bishop, S.G. & Abelson, J.R. (2013). Quasi-equilibrium size distribution of subcritical nuclei in amorphous phase change AgIn-Sb2Te. J Appl Phys 114(3), 034904.CrossRefGoogle Scholar
Darmawikarta, K., Raoux, S., Tchoulfian, P., Li, T., Abelson, J.R. & Bishop, S.G. (2012). Evolution of subcritical nuclei in nitrogen-alloyed Ge2Sb2Te5. J Appl Phys 112(12), 124907.CrossRefGoogle Scholar
Egerton, R.F., Li, P., Malac, M. (2004). Radiation damage in the TEM and STEM. Micron 35, 399409.CrossRefGoogle Scholar
Gibson, J.M. & Treacy, M.M.J. (1997). Diminished medium-range order observed in annealed amorphous germanium. Phys Rev Lett 78(6), 10741077.CrossRefGoogle Scholar
Gibson, J.M., Treacy, M.M.J., Sun, T. & Zaluzec, N.J. (2010). Substantial crystalline topology in amorphous silicon. Phys Rev Lett 105(12), 125504.CrossRefGoogle ScholarPubMed
Gibson, J.M., Treacy, M.M.J. & Voyles, P.M. (2000). Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83(3–4), 169178.CrossRefGoogle ScholarPubMed
Gibson, J.M., Treacy, M.M.J., Voyles, P.M., Jin, H.C. & Abelson, J.R. (1998). Structural disorder induced in hydrogenated amorphous silicon by light soaking. Appl Phys Lett 73(21), 30933095.CrossRefGoogle Scholar
Haberl, B., Bogle, S.N., Li, T., McKerracher, I., Ruffell, S., Munroe, P., Williams, J.S., Abelson, J.R. & Bradby, J.E. (2011). Unexpected short- and medium-range atomic structure of sputtered amorphous silicon upon thermal annealing. J Appl Phys 110(9), 096104.CrossRefGoogle Scholar
Haberl, B., Liu, A.C.Y., Bradby, J.E., Ruffell, S., Williams, J.S. & Munroe, P. (2009). Structural characterization of pressure-induced amorphous silicon. Phys Rev B 79(15), 155209.CrossRefGoogle Scholar
Hwang, J. & Voyles, P.M. (2011). Variable resolution fluctuation electron microscopy on Cu-Zr metallic glass using a wide range of coherent STEM probe size. Microsc Microanal 17(1), 6774.CrossRefGoogle ScholarPubMed
Kwon, M.H., Lee, B.S., Bogle, S.N., Nittala, L.N., Bishop, S.G., Abelson, J.R., Raoux, S., Cheong, B.K. & Kim, K.B. (2007). Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy. Appl Phys Lett 90(2), 021923.CrossRefGoogle Scholar
Lee, B.S., Bishop, S.G. & Abelson, J.R. (2010). Fluctuation transmission electron microscopy: Detecting nanoscale order in disordered structures. Chemphyschem 11(11), 23112317.CrossRefGoogle ScholarPubMed
Lee, B.-S., Burr, G.W., Shelby, R.M., Raoux, S., Rettner, C.T., Bogle, S.N., Darmawikarta, K., Bishop, S.G. & Abelson, J.R. (2009). Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980984.CrossRefGoogle ScholarPubMed
Li, T.T., Darmawikarta, K. & Abelson, J.R. (2013). Quantifying nanoscale order in amorphous materials via scattering covariance in fluctuation electron microscopy. Ultramicroscopy 133, 95100.CrossRefGoogle ScholarPubMed
Nguyen-Tran, T., Suendo, V., Cabarrocas, P.R.I., Nittala, L.N., Bogle, S.N. & Abelson, J.R. (2006). Fluctuation microscopy evidence for enhanced nanoscale structural order in polymorphous silicon thin films. J Appl Phys 100(9), 094319.CrossRefGoogle Scholar
Nittala, L.N., Jayaraman, S., Sperling, B.A. & Abelson, J.R. (2005). Hydrogen-induced modification of the medium-range structural order in amorphous silicon films. Appl Phys Lett 87(24), 241915.CrossRefGoogle Scholar
Pennycook, S.J. & Nellist, P.D. (2011). Scanning Transmission Electron Microscopy: Imaging and Analysis. New York: Springer.CrossRefGoogle Scholar
Stratton, W.G., Hamann, J., Perepezko, J.H. & Voyles, P.M. (2004). Medium-range order in high Al-content amorphous alloys measured by fluctuation electron microscopy. In Amorphous and Nanocrystalline Metals, Busch R., Hufnagel T.C., Eckert J., Inoue A., Johnson W. & Yavari A. (Eds.), pp. MM9.4 1–6. Cambridge University Press, New York: Materials Research Society.Google Scholar
Stratton, W.G., Hamann, J., Perepezko, J.H. & Voyles, P.M. (2006). Electron beam induced crystallization of amorphous Al-based alloys in the TEM. Intermetallics 14, 10611065.CrossRefGoogle Scholar
Stratton, W.G., Hamann, J., Perepezko, J.H., Voyles, P.M., Khare, S.V. & Mao, X. (2005). Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl Phys Lett 86, 141910.CrossRefGoogle Scholar
Treacy, M.M.J. & Gibson, J.M. (1993). Coherence and multiple scattering in “Z-contrast” images. Ultramicroscopy 52(1), 3153.CrossRefGoogle Scholar
Treacy, M.M.J. & Gibson, J.M. (1996). Variable coherence microscopy: A rich source of structural information from disordered materials. Acta Crystallograph A 52, 212220.CrossRefGoogle Scholar
Voyles, P.M. (2001). Fluctuation electron microscopy of medium-range order in amorphous silicon. In Physics. Urbana-Champaign, IL: University of Illinois, 3032.Google Scholar
Voyles, P.M. (2005). FemSim (V 3.0). Madison, WI: University of Wisconsin at Madison.Google Scholar
Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J.M. & Abelson, J.R. (2001 a). Absence of an abrupt phase change from polycrystalline to amorphous in silicon with deposition temperature. Phys Rev Lett 86(24), 55145517.CrossRefGoogle ScholarPubMed
Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J.M. & Abelson, J.R. (2001 b). Increased medium-range order in amorphous silicon with increased substrate temperature. J Non-Crystalline Solids 293, 4552.CrossRefGoogle Scholar
Voyles, P.M. & Muller, D.A. (2002). Fluctuation microscopy in the STEM. Ultramicroscopy 93(2), 147159.CrossRefGoogle Scholar
Yan, A., Sun, T., Borisenko, K.B., Buchholz, D.B., Chang, R.P.H., Kirkland, A.I. & Dravid, V.P. (2012). Multi-scale order in amorphous transparent oxide thin films. J Appl Phys 112(5), 054907.CrossRefGoogle Scholar
Yi, F., Tiemeijer, P. & Voyles, P.M. (2010). Flexible formation of coherent probes on an aberration-corrected STEM with three condensers. J Electron Microsc 59, S15S21.CrossRefGoogle Scholar
Yi, F. & Voyles, P.M. (2011). Effect of sample thickness, energy filtering, and probe coherence on fluctuation electron microscopy experiments. Ultramicroscopy 111(8), 13751380.CrossRefGoogle ScholarPubMed
Yi, F. & Voyles, P.M. (2012). Analytical and computational modeling of fluctuation electron microscopy from a nanocrystal/amorphous composite. Ultramicroscopy 122, 3747.CrossRefGoogle ScholarPubMed
Zuo, J.M. & Spence, J.C.H. (1992). Electron Microdiffraction. New York: Springer.Google Scholar