Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:31:41.512Z Has data issue: false hasContentIssue false

PXRF, μ-XRF, Vacuum μ-XRF, and EPMA Analysis of Email Champlevé Objects Present in Belgian Museums

Published online by Cambridge University Press:  23 September 2011

Veerle Van der Linden
Affiliation:
Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
Eva Meesdom
Affiliation:
Museum Vleeshuis, Vleeshouwersstraat 38-40, 2000 Antwerpen, Belgium
Annemie Devos
Affiliation:
Museum Vleeshuis, Vleeshouwersstraat 38-40, 2000 Antwerpen, Belgium
Rita Van Dooren
Affiliation:
Museum Mayer van den Bergh, Lange Gasthuisstraat 19,2000 Antwerpen, Belgium
Hans Nieuwdorp
Affiliation:
Museum Mayer van den Bergh, Lange Gasthuisstraat 19,2000 Antwerpen, Belgium
Elsje Janssen
Affiliation:
Collectiebeleid/Behoud en Beheer, Hessenhuis, Falconrui 53, 2000 Antwerpen, Belgium
Sophie Balace
Affiliation:
Ghent University, Department of Analytical Chemistry, Krijgslaan 281, S12, B-9000 Gent, Belgium
Bart Vekemans
Affiliation:
Koninklijke Musea Voor Kunst en Geschiedenis (KMKG), Jubelpark 10, 1000 Brussel, Belgium
Laszlo Vincze
Affiliation:
Koninklijke Musea Voor Kunst en Geschiedenis (KMKG), Jubelpark 10, 1000 Brussel, Belgium
Koen Janssens*
Affiliation:
Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.

Type
Analysis of Cultural Heritage Special Section
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biron, I. & Beauchoux, S. (2003). Ion beam analysis of Mosan enamels. Meas Sci Technol 14, 15641578.CrossRefGoogle Scholar
Biron, I., Dandridge, P. & Wypyski, M.T. (1995). La composition des émaux: Analyse en laboratoire. In L' oeuvre de Limoges : emaux limousins du Moyen Âge, Gauthier, M.-M. (Ed.), pp. 446449. Paris: Réunion des Musées Nationaux.Google Scholar
Brain, C. & Dungworth, D. (2009). Late 17th century crystal glass. In Annales du 17e Congrès de l'Association internationale pour l'histoire du verre, Janssens, K. (Ed.), pp. 363369. Antwerp, Belgium: Antwerp University Press.Google Scholar
Chariot, C. (1982). Réflexions sur le voyage de l'abbé Wibald de Stavelot en Aquitaine. Bulletin des Amis du MARAM 9, 513.Google Scholar
England, P. (1986). A technical investigation of medieval enamels. In Catalogue of Medieval Objects, Enamels and Glass, Swarzenski, H. & Netzer, N. (Eds.), pp. 1926. Boston, MA: Museum of Fine Arts.Google Scholar
Geilmann, W. (1962). Beitrage zur Kenntnis alter Glaser VII. Kobalt als Farbungsmittel. Glastechnische Berichte 35, 186192.Google Scholar
Gratuze, B. & Janssens, K. (2004). Provenance analysis of glass artefacts. In Nondestructive Micro Analysis of Cultural Heritage Materials, Janssens, K. & Van Grieken, R., (Eds.), pp. 663670. Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
Harley, R.D. (1982). Artists' Pigments c. 1600–1835. London: Butterworth.Google Scholar
Michaelides, P. (1989). The earliest cloisonne enamels from Cyprus. Glass on Metal 8 (web article). Available at www.glass-on-metal.com/pastart/earliestenamels-michaelides.htm.Google Scholar
Potts, P.J. (1987). A Handbook of Silicate Rock Analysis. Glasgow, UK: Blackie.CrossRefGoogle Scholar
Reed, S.J.B. (1993). Electron Microprobe Analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Richter, R. (1994). Between original and imitation: Four technical studies in basse taille enameling and re-enameling of the historicism period. B Cleveland Mus Art 81, 222251.Google Scholar
Röhrs, S. (2003). Authenizitätsuntersuchungen an Limousiner Maleremails durch Mikro-röntgenfluoreszenzspektrometrische Materialanalysen. PhD Dissertation. Berlin, Germany: Universität Berlin.Google Scholar
Schalm, O. (2001). Characterization of paint layers in stained glass windows. PhD Dissertation. Antwerp, Belgium: University of Antwerp.Google Scholar
Schalm, O. & Janssens, K. (2003). A flexible and accurate quantification algorithm for electron probe X-ray microanalysis based on thin-film element yields. Spectrochim Acta B 58, 669680.CrossRefGoogle Scholar
Speel, E. & Bronk, H. (2001). Enamel painting: Materials and recipes in Europe from c. 1500 to c. 1920. Berliner Beiträge zur Archäometrie 18, 307316.Google Scholar
Stratford, N. (1993). Catalogue of Medieval Enamels in the British Museum, Volume 2. Northern Romanesque Enamel. London, UK: British Museum Press.Google Scholar
Toussaint, J. (1996). Emaux de Limoges XIIe-XIXe siècle. Monographies du Musées des Arts anciens du Namurois 10, 4345.Google Scholar
Van der Linden, V., Bultinck, E., De Ruytter, J., Schalm, O., Janssens, K., Devos, W. & Tiri, W. (2003). Compositional analysis of 17th–18th century archaeological glass fragments, excavated in Mechelen, Belgium: Comparison with data from neighboring cities in the Low Countries. Nucl Instrum Methods 239, 100106.CrossRefGoogle Scholar
Van der Linden, V., Cosyns, P., Schalm, O., Cagno, S., Nys, K., Janssens, K., Nowak, A., Wagner, B. & Bulska, E. (2009). Deeply coloured and black glass in the northern provinces of the Roman Empire: Differences and similarities in chemical composition before and after 150 AD. Archaeometry 51, 822844.CrossRefGoogle Scholar
Van der Linden, V., Schalm, O., Houbraken, J., Thomas, M., Meesdom, E., Devos, A., Van Dooren, R., Nieuwdorp, H., Janssen, E. & Janssens, K. (2010a). Chemical analysis of 16th to 19th century Limoges School painted enamel objects in three museums of the Low Countries. X-Ray Spectrom 39, 112121.CrossRefGoogle Scholar
Van der Linden, V., Van de Casteele, E., Simon Thomas, M., De Vos, A., Janssen, E. & Janssens, K. (2010b). Analysis of micro computed tomography images: A look inside historic enamelled metal objects. Appl Phys A 98, 385392.CrossRefGoogle Scholar