Hostname: page-component-68945f75b7-6rp8b Total loading time: 0 Render date: 2024-09-04T14:31:02.355Z Has data issue: false hasContentIssue false

Properties of Nanobelts and Nanotubes Measured by In Situ TEM

Published online by Cambridge University Press:  22 January 2004

Zhong Lin Wang
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Get access

Abstract

Characterizing the physical properties of individual nanostructures is challenging because of the difficulty in manipulating the objects of sizes from nanometers to micrometers. Most nanomeasurements have been carried using scanning probe microscopy. In this article, we demonstrate that transmission electron microscopy can be a powerful tool for quantitative measurements of the mechanical and electrical properties of a single nanostructure. Dual-mode resonance of an oxide nanobelt has been observed, and its bending modulus has been measured. An in situ technique was demonstrated for measuring the work function at the tip of a carbon nanotube. The ballistic quantum conductance of a multiwalled carbon nanotube was observed at room temperature using the setup in TEM. It is concluded that in situ measurement by directly linking structure with property is a future direction of electron microscopy.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, M.S., Avouris, P.H., Pan, Z.W., & Wang, Z.L. (2003). Field-effect transistors based on single semiconducting oxides nanobelts. J Phys Chem B 107, 659663.CrossRefGoogle Scholar
Bai, X.D., Wang, E.G., Gao, P.X., & Wang, Z.L. (2003a). Dual-mode electromechanical resonance of individual ZnO nanobelts. Appl Phys Lett 82, 48064808.Google Scholar
Bai, X.D., Wang, E.G., Gao, P.X., & Wang, Z.L. (2003b). Measuring the work function at a nanobelt tip and at a nanoparticle surface. NanoLetters (in press).Google Scholar
Bjork, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., & Samuelson, L. (2002). One-dimensional heterostructures in semiconductor nanowhiskers. Appl Phys Lett 80, 10581060.CrossRefGoogle Scholar
Comini, E., Faglia, G., Sberveglieri, G., Pan, Z.W., & Wang, Z.L. (2002). Stable and high-sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81, 18691871.CrossRefGoogle Scholar
Cui, Y., Wei, Q.Q., Park, H.K., & Lieber, C.M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 12891292.CrossRefGoogle Scholar
Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., & Smalley, R.E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147150.CrossRefGoogle Scholar
Duan, X.F., Huang, Y., Agarwal, R., & Lieber, C.M. (2003). Single-nanowire electrically driven lasers. Nature 421, 241245.CrossRefGoogle Scholar
Duan, X.F., Huang, Y., Cui, Y., Wang, J., & Lieber, C.M. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 6669.CrossRefGoogle Scholar
Frank, S., Poncharal, P., Wang, Z.L., & De Heer, Z.L. (1998). Carbon nanotube quantum resistors. Science 280, 17441746.CrossRefGoogle Scholar
Gao, R.P., Pan, Z.W., & Wang, Z.L. (2001). Work function at the tips of multi-walled carbon nanotubes. Appl Phys Lett 78, 17571759.CrossRefGoogle Scholar
Gao, R.P., Wang, Z.L., Bai, Z.G., de Heer, Z.G., Dai, L.M., & Gao, M. (2000). Nanomechanics of aligned carbon nanotube arrays. Phys Rev Lett 85, 622655.CrossRefGoogle Scholar
Ginley, D.S. & Bright, C. (2000). Transparent conducting oxides. MRS Bull, August, 1518.CrossRefGoogle Scholar
Gudiksen, M.S., Lauhon, L.J., Wang, J.F., Smith, D.C., & Lieber, C.M. (2002). Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617620.CrossRefGoogle Scholar
Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., & Yang, P.D. (2001). Room-temperature ultraviolet nanowire nanolasers. Science 292, 18971899.CrossRefGoogle Scholar
Hughes, W. & Wang, Z.L. (2003). Nanobelt as nanocantilever. Appl Phys Lett 82, 28862888.CrossRefGoogle Scholar
Ma, C., Moore, D., Li, J., & Wang, Z.L. (2003). Nanobelts, nanocombs and nano-windmills of wurtzite ZnS. Adv Mater 15, 228231.CrossRefGoogle Scholar
Mao, S.X., Zhao, M.H., & Wang, Z.L. (2002). Probing nano-scale mechanical properties of individual semiconducting nanobelt. Appl Phys Lett 83, 993995.Google Scholar
Meirovich, L. (1986). Elements of Vibration Analysis. 2nd ed. New York: McGraw-Hill.
Pan, Z.W., Dai, Z.R., & Wang, Z.L. (2001a). Semiconducting oxide nanobelts, Science 291, 19471949.Google Scholar
Pan, Z.W., Dai, Z.R., & Wang, Z.L. (2001b). Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl Phys Lett 80, 309311.Google Scholar
Poncharal, P., Berger, C., Yi, Y., Wang, Z.L., & de Heer, W.A. (2002). Room temperature ballistic conduction in carbon nanotubes. J Phys Chem 106, 1210412118.CrossRefGoogle Scholar
Poncharal, P., Wang, Z.L., Ugarte, D., & de Heer, W.A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 15131516.CrossRefGoogle Scholar
Wang, Z.L. (Ed.). (2003). Nanowires and Nanobelts. New York: Kluwer Academic Publisher.
Wang, Z.L., Dai, Z.R., Bai, Z.G., Gao, R.P., & Gole, J.L. (2000a). Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure and mechanical properties. Appl Phys Lett 77, 33493351.Google Scholar
Wang, Z.L. & Kang, Z.C. (1998). Functional and Smart Materials—Structural Evolution and Structural Analysis. New York: Plenum Press.
Wang, Z.L., Poncharal, P., & de Heer, W.A. (2000b). Nanomeasurements of individual carbon nanotubes by in-situ TEM. Pure Appl Chem 72, 209219.Google Scholar
Wang, Z.L., Poncharal, P., & de Heer, W.A. (2000c). Nanomeasurements in transmission electron microscopy. Microsc Microanal 6, 224230.Google Scholar