Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T00:48:45.728Z Has data issue: false hasContentIssue false

Properties of Dipole-Mode Vibrational Energy Losses Recorded From a TEM Specimen

Published online by Cambridge University Press:  01 September 2020

Ray F. Egerton*
Affiliation:
Physics Department, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
Kartik Venkatraman
Affiliation:
School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85281, USA
Katia March
Affiliation:
Eyring Materials Center, Arizona State University, Tempe, AZ 85281, USA
Peter A. Crozier
Affiliation:
School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85281, USA
*
*Author for correspondence: Ray F. Egerton, E-mail: [email protected]
Get access

Abstract

The authors discuss the dipole vibrational modes that predominate in the energy-loss spectra of ionic materials below 1 eV, concentrating on thin-film specimens of typical transmission electron microscopy (TEM) thickness. The thickness dependence of the intensity is shown to be a useful guide to the bulk or surface character of vibrational peaks. The lateral and depth resolution of the energy-loss signal is investigated with the aid of finite-element calculations.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boersch, H, Geiger, J & Bohg, A (1969). Wechselwirkung von elektronen mit gitterschwingungen in ammoniumchlorid und ammoniumbromid. Z Phys 227, 141151.CrossRefGoogle Scholar
Boersch, H, Geiger, J & Hellwig, H (1962). Steigerung der Auflösung bei der elektronen-energieanalyse. Phys Lett 3, 6466.CrossRefGoogle Scholar
Boersch, H, Geiger, J & Stickel, W (1964). Anregung von molekülschwingungen durch schnelle elektronen. Phys Lett 10, 285286.CrossRefGoogle Scholar
Boersch, H, Geiger, J & Stickel, W (1966). Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration. Phys Rev Lett 17, 379381.CrossRefGoogle Scholar
Collins, SM, Kepaptsoglou, DM, Hou, J, Ashing, CW, Radtke, G, Bennett, TD, Midgley, PA & Ramasse, QM (2020). Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes. Nano Lett 20(2), 12721279.CrossRefGoogle ScholarPubMed
Crozier, PA (2017). Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces. Ultramicroscopy 180, 104114.CrossRefGoogle ScholarPubMed
Crozier, PA, Aoki, T & Liu, Q (2016). Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy. Ultramicroscopy 169, 3036.CrossRefGoogle ScholarPubMed
Cueva, P & Muller, DA (2014). High resolution optical and vibrational spectroscopy with low loss EELS. Microsc Microanal 20(Suppl. 3), 201201.CrossRefGoogle Scholar
Dwyer, C, Aoki, T, Rez, P, Chang, SLY, Lovejoy, TD & Krivanek, OL (2016). Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys Rev Lett 117, 256101. doi:10.1103/PhysRevLett.117.256101.CrossRefGoogle ScholarPubMed
Egerton, RF (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer.CrossRefGoogle Scholar
Egerton, RF (2014). Prospects for vibrational-mode EELS with high spatial resolution. Microsc Microanal 20, 658663. doi:10.1017/S1431927613014013.CrossRefGoogle ScholarPubMed
Egerton, RF (2015). Vibrational-loss EELS and the avoidance of radiation damage. Ultramicroscopy 159, 95100.CrossRefGoogle ScholarPubMed
Egerton, RF (2017). Scattering delocalization and radiation damage in STEM-EELS. Ultramicroscopy 180, 115124.CrossRefGoogle ScholarPubMed
Erni, R & Browning, N (2008). The impact of surface and retardation losses on valence electron energy-loss spectroscopy. Ultramicroscopy 108, 8499.CrossRefGoogle ScholarPubMed
Forbes, BD & Allen, LJ (2016). Modeling energy-loss spectra due to phonon excitation. Phys Rev B 94, 014110.CrossRefGoogle Scholar
Fuchs, R & Kliewer, KL (1965). Optical modes of vibration in an ionic crystal slab. Phys Rev 140, 10761088.CrossRefGoogle Scholar
Garcia De Abajo, FJ & Echenique, PM (1992). Wake-potential formation in a thin foil. Phys Rev B 45, 87718774.CrossRefGoogle Scholar
Geiger, J & Jakobs, R-H (1974). Phonenspektroskopie von ammoniumchlorid und ammoniumbromid mit keV elektronen. Z Phys 271, 323328.CrossRefGoogle Scholar
Geiger, J & Katterwe, H (1976). Differences in the interaction of fast electrons with crystalline and amorphous titanium oxide films. Thin Solid Films 32, 359361.CrossRefGoogle Scholar
Geiger, J & Katterwe, H (1978). Electron energy loss study of titanium dioxide, barium titanate and silica in the range between 0.02 and 2 eV. Z Phys 29, 113120.Google Scholar
Geiger, J, Katterwe, H & Schröder, B (1971). Elektronenenergievelust-spektren von graphiteinkristallen und kohlenstoffaufdampfschickten im bereich 0.02—0.4 eV. Z Phys 241, 4554.CrossRefGoogle Scholar
Govyadinov, AA, Konecna, A, Chuvilin, A, Velez, S, Dolado, I, Nikitin, AY, Lopatin, S, Casanova, A, Hueso, LE, Aizpurua, J & Hillenbrand, R (2017). Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat Commun 8, 95. doi:10.1038/s41467-017-00056-y.CrossRefGoogle Scholar
Hage, FS, Kepaptsoglou, DM, Ramasse, QM & Allen, LJ (2019). Phonon spectroscopy at atomic resolution. Phys Rev Lett 122, 016103.CrossRefGoogle ScholarPubMed
Hage, FS, Nicholls, RJ, Yates, JR, McCulloch, DG, Lovejoy, TC, Dellby, N, Krivanek, OL, Refson, K & Ramasse, QM (2018). Nanoscale momentum-resolved vibrational spectroscopy. Sci Adv 4, eaar7495.CrossRefGoogle ScholarPubMed
Hage, FS, Radtke, G, Kepaptsoglou, DM, Lazerri, M & Ramasse, QM (2020). Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 11241127.CrossRefGoogle ScholarPubMed
Hohenester, U, Truegler, A, Batson, PE & Lagos, MJ (2018). Inelastic vibrational bulk and surface losses of swift electrons in ionic nanostructures. Phys Rev B 97, 165418.CrossRefGoogle Scholar
Howie, A (1983). Surface reactions and excitations. Ultramicroscopy 11, 141148.CrossRefGoogle Scholar
Kliewer, KL & Fuchs, R (1966). Optical modes of vibration in an ionic crystal slab including retardation. Phys Rev 144, 495503.CrossRefGoogle Scholar
Konečná, A, Venkatraman, K, March, K, Crozier, PA, Hillenbrand, R, Rez, P & Aizpura, J (2018). Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys Rev B 98, 205409.CrossRefGoogle Scholar
Krivanek, OL, Lovejoy, TC, Dellby, N, Aoki, T, Carpenter, RW, Rez, P, Soignard, E, Zhu, J, Batson, PE, Lagos, MJ, Egerton, RF & Crozier, P (2014). Vibrational spectroscopy in the electron microscope. Nature 514, 209212. doi:10.1038/nature13870.CrossRefGoogle ScholarPubMed
Krivanek, OL, Ursin, JP, Bacon, NJ, Corbin, GJ, Dellby, N, Hrncirik, P, Murfitt, MF, Own, CS & Szilagyi, ZS (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.CrossRefGoogle ScholarPubMed
Kroeger, E (1968). Berechnung der energieverluste schneller elektronen in dünnen schichtenmit retardierung. Z Phys 216, 115135.CrossRefGoogle Scholar
Lagos, MJ, Truegler, A, Amarasinghe, V, Feldman, LC, Hohenester, U & Batson, PE (2018). Excitation of long-wavelength surface optical vibrational modes in films, cubes and film/cube composite system using an atom-sized electron beam. Microscopy 67(S1), i3i14.CrossRefGoogle ScholarPubMed
Lagos, MJ, Truegler, A, Hohenester, U & Batson, PE (2017). Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529534.CrossRefGoogle Scholar
Lucas, AA & Sunjic, M (1971). Fast-electron spectroscopy of surface excitations. Phys Rev Lett 26, 229232.CrossRefGoogle Scholar
Lucas, AA & Sunjic, M (1972). Fast-electron spectroscopy of collective excitations in solids. Prog Surf Sci 2, 75137. doi:10.1016/0079-6816(72)90002-0.CrossRefGoogle Scholar
Palik, ED (Ed.) (1985). Handbook of Optical Constants of Solids, vol. 1. New York: Academic Press.Google Scholar
Radtke, G, Taverna, D, Menguy, N, Pandolfi, S, Courac, A, Le Godec, Y, Krivanek, OL & Lovejoy, TC (2019). Polarization selectivity in vibrational electron energy-loss spectroscopy. Phys Rev Lett 123, 256001.CrossRefGoogle ScholarPubMed
Rez, P (2014). Is localized infrared spectroscopy now possible in the electron microscope? Microsc Microanal 20, 671677.CrossRefGoogle ScholarPubMed
Rez, P, Aoki, T, March, K, Gur, D, Krivanek, OL, Dellby, N, Lovejoy, T, Wolf, SG & Cohen, H (2015). Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nat Commun 7, 10945. doi:10.1038/ncomms10945.CrossRefGoogle Scholar
Ritchie, RH (1957). Plasmon losses by fast electrons in thin films. Phys Rev 106, 874881.CrossRefGoogle Scholar
Rossouw, D & Botton, GA (2013). Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys Rev Lett 110, 066801 (5 pages).CrossRefGoogle ScholarPubMed
Schröder, B & Geiger, J (1972). Electron-spectrometric study of amorphous germanium and silicon in the two-phonon region. Phys Rev Lett 28, 301303.CrossRefGoogle Scholar
Schröder, B, Geiger, J & Müller, HW (1978). Microanalysis of amorphous semiconductor films. In Proc. 9th Int. Cong. Electron Microscopy, vol. 1. Microscopical Society of Canada, Toronto, pp. 534–535.CrossRefGoogle Scholar
Stern, EA & Ferrell, RA (1960). Surface plasma oscillations of a degenerate electron gas. Phys Rev, 1,130136.CrossRefGoogle Scholar
Terauchi, M, Tanaka, M, Tsuno, K & Ishida, M (1999). Development of a high energy resolution electron energy-loss spectroscopy microscope. J Microsc 194, 203209.CrossRefGoogle ScholarPubMed
Thiry, PA, Liehr, M, Pireaux, JJ & Caudano, R (1987). Electron interaction mechanisms in high resolution electron energy loss spectroscopy. Phys Scr 35, 368379.CrossRefGoogle Scholar
Tizei, LHG, Mkhitaryan, V, Lourenko-Martins, H, Scarabelli, L, Watanabe, K, Taniguchi, T, Tence, M, Blazit, J-D, Li, X, Gloter, A, Zobelli, A, Schmidt, F-P, Liz-Marzan, LM, De Abajo, FJG, Stephan, O & Kociak, M (2020). Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Nano Lett 20(5), 29732979. doi:10.1021/acs.nanolett.9b04659.CrossRefGoogle ScholarPubMed
Venkatraman, K, Levin, BDA, March, K, Rez, P & Crozier, PA (2019). Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat Phys 15, 12371241. doi:10.1038/s41567-019-0675-5.CrossRefGoogle Scholar
Venkatraman, K, Rez, P, March, K & Crozier, P (2018). The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2. Microscopy, 110. doi:10.1093/jmicro/dfy003.Google ScholarPubMed
Walls, MG & Howie, A (1989). Dielectric theory of localized energy loss spectroscopy. Ultramicroscopy 28, 4042.CrossRefGoogle Scholar
Willis, RF (1979). Structure determination of H chemisorbed on the reconstructed W(100) surface by vibrational modes analysis. Surf Sci 89, 457466.CrossRefGoogle Scholar
Willis, RF (1980). Angle and energy dependent electron impact vibrational excitation of adsorbates. In Vibrational Spectroscopy of Adsorbates, Willis, RF (Ed.), pp. 2354. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar