Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T00:42:01.641Z Has data issue: false hasContentIssue false

Oxygen Octahedral Distortions in LaMO3/SrTiO3 Superlattices

Published online by Cambridge University Press:  24 April 2014

Gabriel Sanchez-Santolino
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Mariona Cabero
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Maria Varela*
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Javier Garcia-Barriocanal
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain
Carlos Leon
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain
Stephen J. Pennycook
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
Jacobo Santamaria
Affiliation:
GFMC, Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain
*
*Corresponding author.[email protected]
Get access

Abstract

In this work we study the interfaces between the Mott insulator LaMnO3 (LMO) and the band insulator SrTiO3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectral imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies. On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. These findings are discussed in view of the transport and magnetic differences found in previous studies.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, R.F., Fennie, C.J. & Neaton, J.B. (2011). Band gap and edge engineering via ferroic distortion and anisotropic strain: The case of SrTiO3 . Phys Rev Lett 107, 146804.CrossRefGoogle ScholarPubMed
Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V. & Pennycook, S.J. (2010). Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105, 087204.CrossRefGoogle ScholarPubMed
Bosman, M., Keast, V., García-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.CrossRefGoogle ScholarPubMed
Bosman, M., Watanabe, M., Alexander, D.T.L. & Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 10241032.CrossRefGoogle ScholarPubMed
Browning, N.D., Chisholm, M.C. & Pennycook, S.J. (1993). Atomic resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.CrossRefGoogle Scholar
Caviglia, A.D., Gariglio, S., Reyren, N., Jaccard, D., Schneider, T., Gabay, M., Thiel, S., Hammerl, G., Mannhart, J. & Triscone, J.-M. (2008). Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624627.CrossRefGoogle ScholarPubMed
Cen, C., Thiel, S., Mannhart, J. & Levy, J. (2009). Oxide nanoelectronics on demand. Science 323, 10261030.CrossRefGoogle ScholarPubMed
Choi, M., Oba, F., Kumagai, Y. & Tanaka, I. (2013). Anti‐ferrodistortive‐Like oxygen‐octahedron rotation induced by the oxygen vacancy in cubic SrTiO3 . Adv Mater 25, 8690.CrossRefGoogle ScholarPubMed
Garcia-Barriocanal, J., Bruno, F.Y., Rivera-Calzada, A., Sefrioui, Z., Nemes, N.M., Garcia-Hernández, M., Rubio-Zuazo, J., Castro, G.R., Varela, M., Pennycook, S.J., Leon, C. & Santamaria, J. (2010). “Charge leakage” at LaMnO3/SrTiO3 interfaces. Adv Mater 22, 627632.CrossRefGoogle ScholarPubMed
Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J. & Santamaria, J. (2008). Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676680.CrossRefGoogle ScholarPubMed
Jia, C.L., Mi, S.B., Faley, M., Poppe, U., Schubert, J. & Urban, K. (2009). Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys Rev B 79, 081405.CrossRefGoogle Scholar
Kim, Y.-M., Kumar, A., Hatt, A., Morozovska, A.N., Tselev, A., Biegalski, M.D., Ivanov, I., Eliseev, E.A., Pennycook, S.J., Rondinelli, J.M., Kalinin, S.V. & Borisevich, A.Y. (2013). Interplay of octahedral tilts and polar order in BiFeO3 films. Adv Mater 25, 24972504.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.CrossRefGoogle ScholarPubMed
Lee, J.H., Delaney, K.T., Bousquet, E., Spaldin, N.A. & Rabe, K.M. (2013). Strong coupling of Jahn-Teller distortion to oxygen-octahedron rotation and functional properties in epitaxially-strained orthorhombic LaMnO3. arXiv:1307.3347 [cond-mat.str-el], 1–7.CrossRefGoogle Scholar
Longo, P., Thomas, P.J. & Twesten, R.D. (2012). Atomic-level EELS mapping using high-energy edges in DualEELS mode. Microsc Today 20, 3036. http://www.gatan.com/files/PDF/Use_of_MLLS_fitting_EELS_FL.pdf CrossRefGoogle Scholar
May, S.J., Ryan, P.J., Robertson, J.L., Kim, J.-W., Santos, T.S., Karapetrova, E., Zarestky, J.L., Zhai, X., te Velthuis, S.G.E., Eckstein, J.N., Bader, S.D. & Bhattacharya, A. (2009). Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nat Mater 8, 892897.CrossRefGoogle ScholarPubMed
Norby, P., Krogh Andersen, I.G., Krogh Andersen, E. & Andersen, N.H. (1995). The crystal structure of lanthanum manganate(lll), LaMnO3 at room temperature and at 1273 K under N2 . J Solid State Chem 119, 191196.CrossRefGoogle Scholar
Ohtomo, A. & Hwang, H.Y. (2004). A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423426.CrossRefGoogle ScholarPubMed
Pennycook, S.J. & Varela, M. (2011). New views of materials through aberration-corrected scanning transmission electron microscopy. J Electron Microsc 60(Suppl 1), S213S223.Google ScholarPubMed
Reyren, N., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C. W., W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J.-M. & Mannhart, J. (2007). Superconducting interfaces between insulating oxides. Science 317, 11961199.CrossRefGoogle ScholarPubMed
Rivera-Calzada, A., Diaz-Guillen, M.R., Dura, O.J., Sanchez-Santolino, G., Pennycook, T.J., Schmidt, R., Bruno, F.Y., Garcia-Barriocanal, J., Sefrioui, Z., Nemes, N.M., Garcia-Hernandez, M., Varela, M., Leon, C., Pantelides, S.T., Pennycook, S.J. & Santamaria, J. (2011). Tailoring interface structure in highly strained YSZ/STO heterostructures. Adv Mater 23, 52685274.CrossRefGoogle ScholarPubMed
Smadici, Ş., Abbamonte, P., Bhattacharya, A., Zhai, X., Jiang, B., Rusydi, A., Eckstein, J., Bader, S. & Zuo, J.M. (2007). Electronic reconstruction at SrMnO3-LaMnO3 superlattice interfaces. Phys Rev Lett 99, 196404.CrossRefGoogle ScholarPubMed
Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W. & Mannhart, J. (2006). Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 19421945.CrossRefGoogle ScholarPubMed
Tsymbal, E.Y., Dagotto, E.R., Eom, C.-B. & Ramesh, R. (2012). Multifunctional Oxide Heterostructures. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Varela, M., Gazquez, J. & Pennycook, S.J. (2012). STEM-EELS imaging of complex oxides and interfaces. MRS Bull 37, 2935.CrossRefGoogle Scholar
Varela, M., Oxley, M., Luo, W., Tao, J., Watanabe, M., Lupini, A., Pantelides, S. & Pennycook, S. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.CrossRefGoogle Scholar
Varela, M., Sefrioui, Z. & Arias, D. (1999). Intracell changes in epitaxially strained YBa2Cu3O7-x ultrathin layers in YBa2Cu3O7-x/PrBa2Cu3O7 superlattices. Phys Rev Lett 83, 39363939.CrossRefGoogle Scholar
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. & Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 17191722.CrossRefGoogle ScholarPubMed
Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. (2011). Interface physics in complex oxide heterostructures. Ann Rev Cond Mat Phys 2, 141165.CrossRefGoogle Scholar