Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:51:49.021Z Has data issue: false hasContentIssue false

Overview: Recent Progress in Three-Dimensional Atom Probe Instruments and Applications

Published online by Cambridge University Press:  14 November 2007

Alfred Cerezo
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Peter H. Clifton
Affiliation:
Oxford nanoScience Division, Imago Scientific Instruments, 4-6 Carters Lane, Kiln Farm, Milton Keynes MK11 3ER, UK
Sergio Lozano-Perez
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Peter Panayi
Affiliation:
Oxford nanoScience Division, Imago Scientific Instruments, 4-6 Carters Lane, Kiln Farm, Milton Keynes MK11 3ER, UK
Gang Sha
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
George D.W. Smith
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
Get access

Abstract

Over the last few years there have been significant developments in the field of three-dimensional atom probe (3DAP) analysis. This article reviews some of the technical compromises that have led to different instrument designs and the recent improvements in performance. An instrument has now been developed, based around a novel reflectron configuration combining both energy compensation and focusing elements, that yields a large field of view and very high mass resolution. The use of laser pulsing in the 3DAP, together with developments in specimen preparation methods using a focused ion-beam instrument, have led to a significant widening in the range of materials science problems that can be addressed with the 3DAP. Recent studies of semiconductor materials and devices are described.

Type
Research Article
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagot, P.A.J., Cerezo, A. & Smith, G.D.W. (2007). 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces II: Results on Pt and Pt-Rh. Surf Sci 601, 22452255.CrossRefGoogle Scholar
Bagot, P.A.J., De Bocarme, T.V., Cerezo, A. & Smith, G.D.W. (2006). 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: Instrumentation. Surf Sci 600, 30283035.CrossRefGoogle Scholar
Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 23172319.CrossRefGoogle Scholar
Blavette, D., Cadel, E., Pareige, C., Deconihout, B. & Caron, P. (2007). Phase transformation and segregation to lattice defects in Ni-base superalloys. Microsc Microanal 13, 464483.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Warren, P.J. & Smith, G.D.W. (1998). Performance of an energy-compensated 3-dimensional atom probe. Rev Sci Instrum 69, 4958.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed 3-dimensional atom probe. Appl Phys Lett 88, 154103.CrossRefGoogle Scholar
Chang, L., Barnard, S.J. & Smith, G.D.W. (1983). Imaging atom probe study of solute atmospheres surrounding dislocations in iron-carbon alloys. In Proceedings of the 30th International Field Emission Symposium, Graham, W.R. & Melmed, A.J. (Eds.), pp. 9799. Philadelphia: University of Pennsylvania.
Cottrell, A.H. & Bilby, B.A. (1949). Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A 62, 4962.CrossRefGoogle Scholar
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M. & Deconihout, B. (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 013304-1-8.CrossRefGoogle Scholar
Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Stokes, D.J., Clifton, P. & Cerezo, A. (2007). Examination of an InGaN/GaN multiple quantum structure using the three dimensional atom probe. Appl Phys Lett 90, 061903.CrossRefGoogle Scholar
Gault, B., Menand, A., De Geuser, F. & Deconihout, B. (2006a). Investigation of an oxide layer by femtosecond-laser-assisted atom probe tomography. Appl Phys Lett 88, 114101.Google Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006b). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.Google Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447.CrossRefGoogle Scholar
Gorman, B.P., Norman, A.G & Yan, Y. (2007). Atom probe analysis of III–V and Si-based semiconductor photovoltaic structures. Microsc Microanal 13, 493502.CrossRefGoogle Scholar
Jagutzki, O., Cerezo, A., Czasch, A., Dorner, R., Hattass, M., Huang, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Bocking, H. & Smith, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R., Bunton, J.H. & Gorman, B. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Krakauer, B.W. & Seidman, D.N. (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48, 67246727.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Larson, D.J., Petford-Long, A.K., Ma, Y.Q. & Cerezo, A. (2004). Information storage materials: Nanoscale characterisation by three-dimensional atom probe analysis. Acta Mater 52, 28472862.CrossRefGoogle Scholar
Larson, D.J., Wissman, B.D., Martens, R.L., Viellieux, R.J., Kelly, T.F., Gribb, T.T., Erskine, H.F. & Tabat, N. (2001). Advances in atom probe specimen fabrication from planar multilayer thin film structures. Microsc Microanal 7, 2431.Google Scholar
Lawrence, D., Thompson, K. & Larson, D.J. (2006). Site-specific specimen preparation technique for atom probe analysis of grain boundaries. Micros Microanal 12, 1740–1741CD.CrossRefGoogle Scholar
Liu, J., Wu, C.W. & Tsong, T.T. (1991). Measurement of the atomic site specific binding-energy of surface atoms of metals and alloys. Surf Sci 246, 157162.Google Scholar
Marquis, E.A., Seidman, D.N., Asta, M., Woodward, C. & Ozolins, V. (2003). Mg segregation at Al/Al3Sc heterophase interphases on the atomic scale: Experiments and computations. Phys Rev Lett 91, 036101.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field–Ion Microscopy, pp. 447465. Oxford, UK: Oxford University Press.
Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W. & Elliott, C.M. (1995). Spinodal decomposition in Fe–Cr alloys: Experimental study at the atomic level and comparison with computer models. (3 papers.) Acta Met Mater 43, 33853426.Google Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.CrossRefGoogle Scholar
Miller, M.K., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of use of focused ion beam methods for atom probe analysis. Microsc Microanal 13, 428436.CrossRefGoogle Scholar
Müller, E.W. (1968). Resolution of the atomic structure of a metal surface by the field ion microscope. J Appl Phys 27, 474476.Google Scholar
Müller, E.W., Panitz, J.A. & McLean, S.B. (1956). Atom probe field-ion microscopy. Rev Sci Instrum 39, 8386.Google Scholar
Nishikawa, O. & Kimoto, M. (1994). Toward a scanning atom-probe—Computer-simulation of electric-field. Appl Surf Sci 76/77, 424430.CrossRefGoogle Scholar
Panayi, P. (2006). Reflectron. International patent application WO2006/120428, published November 16, 2006.
Panitz, J.A. (1973). The 10cm atom probe. Rev Sci Instrum 44, 10341038.CrossRefGoogle Scholar
Pareige, C., Soisson, F., Martin, G. & Blavette, D. (1999). Ordering and phase separation in Ni-Cr-Al: Monte Carlo simulations vs three-dimensional atom probe. Acta Mater 47, 18891899.CrossRefGoogle Scholar
Petford-Long, A.K., Ma, Y.Q., Cerezo, A., Larson, D.J., Singleton, E.W. & Carr, B.W. (2005). The formation mechanism of aluminium oxide tunnel barriers: Three-dimensional atom probe analysis. J Appl Phys 98, 124904-1-6.CrossRefGoogle Scholar
Smith, G.D.W., Grovenor, C.R.M., Delargy, K.M., Godfrey, T.J. & McCabe, A.R. (1982). Direct comparison of performance of atom probe in pulsed-laser and voltage-pulsed modes. In Proceedings of the 29th International Field Emission Symposium, Andrén, H.-O. & Norden, H. (Eds.), pp. 283289. Stockholm: Almquist and Wiksell International.
Thuvander, M. & Andrén, H.-O. (2000). APFIM studies of grain and phase boundaries: A review. Mater Character 44, 87100.CrossRefGoogle Scholar
Vella, A., Vurpillot, F., Gault, B., Menand, A. & Deconihout, B. (2006). Evidence of field evaporation assisted by non-linear optical rectification induced by ultrafast laser. Phys Rev B 73, 165416.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196, 332336.CrossRefGoogle Scholar
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203, 295302.CrossRefGoogle Scholar
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88, 094105.CrossRefGoogle Scholar
Waugh, A.R., Payne, S.M., Worrall, G.M. & Smith, G.D.W. (1984). In situ ion milling of field ion specimens using a liquid metal ion source. J de Phys 45-C9, 207209.CrossRefGoogle Scholar
Waugh, A.R. & Southon, M.J. (1977). Surface studies with an imaging atom-probe. Surf Sci 68, 7985.CrossRefGoogle Scholar
Wilde, J., Cerezo, A. & Smith, G.D.W. (2000). Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scripta Mater 43, 3948.CrossRefGoogle Scholar
Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L. & Kelly, T.F. (2001). Atomic scale structure of sputtered metal multilayers. Acta Mater 49, 40054015.CrossRefGoogle Scholar

Cerezo et al

Figure 3

Download Cerezo et al(Video)
Video 1.2 MB

Cerezo et al

Figure 4(b). Fe superalloy, isosurface from the same material as Fig 4(b), although it is actually a different set. All Mg and Zn atoms are shown.

Download Cerezo et al(Video)
Video 5.7 MB