Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T00:39:46.711Z Has data issue: false hasContentIssue false

Optimized Deconvolution for Maximum Axial Resolution in Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  08 December 2011

Ranjan Ramachandra
Affiliation:
Vanderbilt UniversitySchool of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA
Niels de Jonge*
Affiliation:
Vanderbilt UniversitySchool of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos T A Math Phys Eng Sci 367, 38253844.Google ScholarPubMed
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci 103, 30443048.CrossRefGoogle ScholarPubMed
Crewe, A.V. & Wall, J. (1970). A scanning microscope with 5 Å resolution. J Mol Biol 48, 375393.CrossRefGoogle ScholarPubMed
de Jonge, N., Bigelow, W.C. & Veith, G.M. (2010a). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.CrossRefGoogle ScholarPubMed
de Jonge, N., Sougrat, R., Northan, B.M. & Pennycook, S.J. (2010b). Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 16, 5463.CrossRefGoogle ScholarPubMed
de Jonge, N., Sougrat, R., Peckys, D., Lupini, A.R. & Pennycook, S.J. (2007). 3-dimensional aberration corrected scanning transmission electron microscopy for biology. In Nanotechnology in Biology and Medicine, Vo Dinh, T. (Ed.), pp. 13.1113.27. Boca Raton, FL: CRC Press.Google Scholar
Dukes, M.J., Ramachandra, R., Jean-Pierre, B., Jerome, G.M. & de Jonge, N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174, 552562.CrossRefGoogle Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.CrossRefGoogle ScholarPubMed
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.CrossRefGoogle Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2010). Three-dimensional optical sectioning by scanning confocal electron microscopy with a stage-scanning system. Microsc Microanal 16, 233238.CrossRefGoogle ScholarPubMed
Holmes, T. & O'Connor, N. (2000). Blind deconvolution of 3D transmitted light brightfield micrographs. J Microsc 200, 114127.CrossRefGoogle ScholarPubMed
Holmes, T.J. (1992). Blind deconvolution of quantum-limited incoherent images: Maximum likelihood approach. J Opt Soc Am 9, 10521061.CrossRefGoogle ScholarPubMed
Hovden, R., Xin, H.L. & Muller, D.A. (2011). Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc Microanal 17, 7580.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Lupini, A.R. & de Jonge, N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17(5), 817826.CrossRefGoogle ScholarPubMed
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.CrossRefGoogle Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.CrossRefGoogle ScholarPubMed
Parton, R.M. & Davis, I. (Eds.) (2007). Lifting the Fog: Image Restoration by Deconvolution. San Diego, CA: Academic Press.Google Scholar
Pawley, J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.CrossRefGoogle Scholar
Puetter, R.C., Gosnell, T.R. & Yahil, A. (2005). Digital image reconstruction: Deblurring and denoising. Annu Rev Astron Astrophys 43, 139194.CrossRefGoogle Scholar
Ramachandra, R., Demers, H. & de Jonge, N. (2011). Atomic-resolution scanning transmission electron microscopy through 50 nm-thick silicon nitride membranes. Appl Phys Lett 98, 93109.CrossRefGoogle ScholarPubMed
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Stahlberg, H. & Walz, T. (2008). Molecular electron microscopy: State of the art and current challenges. ACS Chem Biol 3, 268281.CrossRefGoogle ScholarPubMed
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.CrossRefGoogle Scholar
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S.J., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.CrossRefGoogle Scholar
Wallace, W., Schaefer, L.H. & Swedlow, J.R. (2001). A workingperson's guide to deconvolution in light microscopy. Biotechniques 31, 10761078, 1080, 1082 passim.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc (Tokyo) 58, 157165.CrossRefGoogle ScholarPubMed