Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T19:56:34.010Z Has data issue: false hasContentIssue false

Operation of TEAM I in a User Environment at NCEM

Published online by Cambridge University Press:  31 July 2012

Peter Ercius*
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 72-150, Berkeley, CA 94720, USA
Markus Boese
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 72-150, Berkeley, CA 94720, USA
Thomas Duden
Affiliation:
T.D. Scientific Engineering Services, Borgsenallee 35, D-33649 3B, Germany
Ulrich Dahmen
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 72-150, Berkeley, CA 94720, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

TEAM I is the final product of the Transmission Electron Aberration-corrected Microscope (TEAM) Project, a collaborative project funded by the Department of Energy with the goal of designing and building a platform for a next generation aberration-corrected electron microscope capable of image resolution of up to 50 pm. The TEAM instrument incorporates a number of new technologies, including spherical- and chromatic-aberration correction, an all-piezo-electric sample stage and an active-pixel direct electron detector. This article describes the functionality of this advanced instrumentation, its response to changes in environment or operating conditions, and its stability during daily operation within the National Center for Electron Microscopy user facility.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Battaglia, M., Contarato, D., Denes, P., Doering, D., Duden, T., Krieger, B., Giubilato, P., Gnani, D. & Radmilovic, V. (2010). Characterisation of a CMOS active pixel sensor for use in the team microscope. Nucl Instrum Meth A 622(3), 669677.CrossRefGoogle Scholar
Battaglia, M., Contarato, D., Denes, P. & Giubilato, P. (2009). Cluster imaging with a direct detection CMOS pixel sensor in transmission electron microscopy. Nucl Instrum Meth A 608(2), 363365.CrossRefGoogle Scholar
Dahmen, U., Erni, R., Radmilovic, V., Ksielowski, C., Rossell, M.-D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Philos T R Soc A 367(1903), 37953808.CrossRefGoogle ScholarPubMed
Duden, T. (2009). Capacitance displacement and rotation sensor. US Patent 2011/0175629. Google Scholar
Duden, T., Gautam, A. & Dahmen, U. (2011). Kspacenavigator as a tool for computer-assisted sample tilting in high-resolution imaging, tomography and defect analysis. Ultramicroscopy 111(11), 15741580.CrossRefGoogle ScholarPubMed
Gianuzzi, L.A. & Stevie, F.A. (2004). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. New York: Springer.Google Scholar
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science 323(5922), 17051708.CrossRefGoogle ScholarPubMed
Haider, M., Hartel, P., Miller, H., Uhlemann, S. & Zach, J. (2010). Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc Microanal 16, 393408.CrossRefGoogle Scholar
Haider, M., Muller, H., Uhlemann, S., Zach, J., Loebau, U. & Hoeschen, R. (2008). Prerequisites for a Cc/Cs corrected ultrahigh-resolution TEM. Ultramicroscopy 108(3), 167178.CrossRefGoogle ScholarPubMed
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected stem. Ultramicroscopy 81(3-4), 163175.CrossRefGoogle ScholarPubMed
Kaiser, U., Biskupek, J., Meyer, J., Leschner, J., Lechner, L., Rose, H., Stoger-Pollach, M., Khlobystov, A., Hartel, P., Muller, H., Haider, M., Eyhusen, S. & Benner, G. (2011). Transmission electron microscopy at 20kv for imaging and spectroscopy. Ultramicroscopy 111(8), 12391246.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Mller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E., Donchev, T., Kenik, E., Lupini, A., Bentley, J., Pennycook, S., Anderson, I., Minor, A., Schmid, A., Duden, T., Radmilovic, V., Ramasse, Q., Watanabe, M., Erni, R., Stach, E., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-information limit. Microsc Microanal 14(5), 469477.CrossRefGoogle ScholarPubMed
Krivanek, O., Dellby, N. & Lupini, A. (1999). Towards sub-electron beams. Ultramicroscopy 78(1-4), 111.CrossRefGoogle Scholar
Lee, Z., Jeon, K.-J., Dato, A., Erni, R., Richardson, T.J., Frenklach, M. & Radmilovic, V. (2009). Direct imaging of soft/hard interfaces enabled by graphene. Nano Lett 9(9), 33653369.CrossRefGoogle ScholarPubMed
Lee, Z., Meyer, J., Rose, H. & Kaiser, U. (2012). Optimum HRTEM image contrast at 20 kV and 80 kV—Exemplified by graphene. Ultramicroscopy 112(1), 3946.CrossRefGoogle ScholarPubMed
Schmid, A. & Andresen, N. (2011). Motorized manipulator for positioning a TEM specimen. US Patent 7,851,769. Google Scholar
van de Water, J., van den Oetelaar, J., Wagner, R., Slingerland, H., Bruggers, J., Ottevanger, A., Schmid, A., Olson, E., Petrov, I., Donchev, T. & Duden, T. (2011). Manipulator for rotating and translating a sample holder. US Patent 7,884,326. Google Scholar
Van den Broek, W., Van Aert, S. & Van Dyck, D. (2012). Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency. Microsc Microanal 18(2), 336342.CrossRefGoogle Scholar
Zemlin, F., Weiss, K., Schiske, P., Kunath, W. & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.CrossRefGoogle Scholar