Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T21:09:51.855Z Has data issue: false hasContentIssue false

On the Role of Characterization in the Design of Interfaces in Nanoscale Materials Technology

Published online by Cambridge University Press:  01 June 2004

S.P. Ringer
Affiliation:
Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
K.R. Ratinac
Affiliation:
Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
Get access

Abstract

This work reviews recent research on the design and control of interfaces in engineering nanomaterials. Four case studies are presented that demonstrate the power of a multimodal approach to the characterization of different types of interfaces. We have used a combination of conventional, high resolution, and analytical transmission electron microscopy, microbeam electron diffraction, and three-dimensional atom probe to study polymer–clay nanocomposites, turbine rotor steels used for power generation, multicomponent aluminum alloys, and nanocrystalline magnetic materials.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appel, F. & Wagner, F. (1994). Twinning in advanced materials. In Proceedings of Materials Week October 1993, Yoo, M.H. & Wuttig, M. (Eds.), pp. 317330. Warrendale, PA: TMS.
Barton, A.F.M. (1983). CRC Handbook of Solubility Parameters and Other Cohesion Parameters. Boca Raton, FL: CRC Press Inc.
Brook, G.B. & Hatt, B.A. (1969). The Mechanisms of Phase Transformations in Crystalline Solids. London: Institute of Metals.
Chassin, P., Jounay, C., & Quiquampoix, H. (1986). Measurement of the surface free-energy of calcium-montmorillonite. Clay Minerals 21, 899907.Google Scholar
Chen, G., Ma, Y., & Qi, Z. (2001). Preparation and morphological study of an exfoliated polystyrene/montmorillonite nanocomposite. Scripta Mater 44, 125128.Google Scholar
Dean, J.A. (1999). Lange's Handbook of Chemistry, 15th ed. New York: McGraw-Hill, Inc.
Fu, X. & Qutubuddin, S. (2001). Polymer-clay nanocomposites: Exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42, 807813.Google Scholar
Giannelis, E.P. (1996). Polymer layered silicate nanocomposites. Adv Mater 8, 2935.Google Scholar
Ho, O.B. (1996). The determination of Davies HLB increments for cationic surfactants from zeta potential measurements on emulsions. In Proceedings of the 4th World Surfactant Congress, Section D, pp. 451461. Barcelona: CED.
Jaffee, R.I. (1979). Metallurgical problems and opportunities in coal-fired steam power plants. Metall Trans A 10, 139164.Google Scholar
Kumacheva, E., Kalinina, O., & Lilge, L. (1999). Three-dimensional arrays in polymer nanocomposites. Adv Mater 11, 231234.Google Scholar
Lan, T. & Pinnavaia, T.J. (1994). Clay-reinforced epoxy nanocomposites. Chem Mater 6, 22162219.Google Scholar
Lee, S.Y. & Kim, S.J. (2002). Expansion of smectite by hexadecyltrimethylammonium. Clays Clay Minerals 50, 435445.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography. New York: Kluwer Academic/Plenum Publishers.
Miller, M.K., Cerezo, A., Hetherington, M.G., & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.
Mitera, M., Naka, M., Masumoto, T., Kazama, N., & Watanabe, K. (1978). Effects of metalloids on the magnetic properties of iron-based amorphous alloys. Phys Status Solidi A 49, K163K166.Google Scholar
Morgan, A.B., Gilman, J.W., & Jackson, C.L. (2001). Characterization of the dispersion of clay in a polyetherimide nanocomposite. Macromolecules 34, 27352738.Google Scholar
Moss, C.J., Croker, A.B.L., & Harrison, R.P. (1995). A perspective of pressure plant life management in Australia. Internal Technical Report. Advanced Material Program, ANSTO.
Muddle, B.C., Ringer, S.P., & Polmear, I.J. (1994). High strength microalloyed aluminium alloys. Trans Mater Res Soc Japan B 19, 9991023.Google Scholar
Paillet, M. & Dufresne, A. (2001). Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34, 65276530.Google Scholar
Panzer, J. (1973). Components of solid surface free energy from wetting measurements. J Colloid Interface Sci 44, 142161.Google Scholar
Percy, M.J., Barthet, C., Lobb, J.C., Khan, M.A., Lascelles, S.F., Vamvakaki, M., & Armes, S.P. (2000). Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites. Langmuir 16, 69136920.Google Scholar
Polmear, I.J. (1987). Role of trace elements in aged aluminum alloys. Mater Sci Forum 13–14, 195214.Google Scholar
Ransom, B. & Helgeson, H.C. (1994). Estimation of the standard molal heat capacities, entropies, and volumes of 2:1 clay minerals. Geochim Cosmochim Acta 58, 45374547.Google Scholar
Richter, L. & Vollhardt, D. (1995). Concept of surface interaction energy densities: Basis for emulsifying properties of organic solvents immiscible with water. Colloids and Surfaces A 95, 113118.Google Scholar
Ringer, S.P. & Hono, K. (2000). Microstructural evolution and age hardening in aluminium alloys: Atom probe field ion microscopy and transmission electron microscopy studies. Mater Charact 44, 101131.Google Scholar
Ringer, S.P., Hono, K., Polmear, I.J., & Sakurai, T. (1996). Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios. Acta Metall Mater 44, 18831898.Google Scholar
Ringer, S.P., Hono, K., & Sakurai, T. (1995). On the effect of trace additions of Sn to Al-Cu alloys. Metall Mater Trans A 26, 22072217.Google Scholar
Ringer, S.P., Quan, G.C., & Sakurai, T. (1998). Solute clustering, segregation and microstructure in high strength low alloy Al-Cu-Mg alloys. Mater Sci Eng A 250, 120125.Google Scholar
Shekhter, A., Croker, A.B.L., Hellier, A.K., Moss, C.J., & Ringer, S.P. (2000). Towards the correlation of fracture toughness in an ex-service power generating rotor. Int J Pressure Vessels and Piping, 77, 113116.Google Scholar
Shi, H., Lan, T., & Pinnavaia, T.J. (1996). Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem Mater 8, 15841587.Google Scholar
Suzuki, K. & Cadogan, J.M. (1998). Random magnetocrystalline anisotropy in two phase nanocrystalline systems. Phys Rev B 58, 27302739.Google Scholar
Suzuki, K. & Cadogan, J.M. (1999). The effect of the spontaneous magnetization in the grain boundary region on the magnetic softness of nanocrystalline materials. J Appl Phys 85, 44004402.Google Scholar
Suzuki, K., Cadogan, J.M., Aoki, K., & Ringer, S.P. (2002). Soft magnetic properties of Ge doped nanocrystalline Fe-Zr-B alloys. J Magn Magn Mater 254–255, 441443.Google Scholar
Vaia, R.A. (2000). Structural characterisation of polymer-layered silicate nanocomposites. In Polymer–Clay Nanocomposites, Pinnavaia, T.J. & Beall, G.W. (Eds.), pp. 229266. Chichester, UK: John Wiley & Sons.
Villars, P. & Calvert, L.D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd edition. Materials Park, OH: ASM International.
Viswanathan, R. (1989). Damage Mechanism and Life Assessment of High-Temperature Components. Materials Park, OH: ASM International.
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum Press.
Zeng, C. & Lee, L.J. (2001). Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 34, 40984103.Google Scholar
Zhou, Y., Yu, S., Wang, C., Li, X., Zhu, Y., & Chen, Z. (1999). A novel in situ simultaneous polymerization-hydrolysis technique for fabrication of polyacrylamide-semiconductor MS (M = Cd, Zn, Pb) nanocomposites. Chem Comm 5, 12291230.Google Scholar
Zilg, C., Dietsche, F., Hoffmann, B., Dietrich, C., & Mulhaupt, R. (2001). Nanofillers based upon organophilic layered silicates. Macromol Symp 169, 6577.Google Scholar