Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T00:55:49.778Z Has data issue: false hasContentIssue false

On the Field Evaporation Behavior of a Model Ni-Al-Cr Superalloy Studied by Picosecond Pulsed-Laser Atom-Probe Tomography

Published online by Cambridge University Press:  06 November 2008

Yang Zhou
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA
Christopher Booth-Morrison
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA
David N. Seidman*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, USA Northwestern UniversityCenter for Atom-Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208-3108, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The effects of varying the pulse energy of a picosecond laser used in the pulsed-laser atom-probe (PLAP) tomography of an as-quenched Ni-6.5 Al-9.5 Cr at.% alloy are assessed based on the quality of the mass spectra and the compositional accuracy of the technique. Compared to pulsed-voltage atom-probe tomography, PLAP tomography improves mass resolving power, decreases noise levels, and improves compositional accuracy. Experimental evidence suggests that Ni2+, Al2+, and Cr2+ ions are formed primarily by a thermally activated evaporation process, and not by post-ionization of the ions in the 1+ charge state. An analysis of the detected noise levels reveals that for properly chosen instrument parameters, there is no significant steady-state heating of the Ni-6.5 Al-9.5 Cr at.% tips during PLAP tomography.

Type
Microanalysis
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bajikar, S.S., Larson, D.J., Kelly, T.F. & Camus, P.P. (1996). Magnification and mass resolution in local-electrode atom probes. Ultramicroscopy 65(1–2), 119129.Google Scholar
Booth-Morrison, C., Weninger, J., Sudbrack, C.K., Mao, Z., Noebe, R.D. & Seidman, D.N. (2008). Effects of solute concentrations on kinetic pathways in Ni-Al-Cr alloys. Acta Mat 56(14), 34223438.Google Scholar
Brandon, D.G. (1964). The structure of field-evaporated surfaces. Surf Sci 3, 118.Google Scholar
Brandon, D.G. (1965). The analysis of field evaporation data from field-ion microscope experiments. Br J Appl Phys 16(5), 683688.Google Scholar
Brandon, D.G. (1966a). Field evaporation. Philos Mag 14(130), 803820.Google Scholar
Brandon, D.G. (1966b). Field evaporation of dilute alloys. Surf Sci 5(1), 137146.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instruments and specimen design for optimum performance. Microsc Microanal 13, 418427.Google Scholar
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Shab, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007a). Atom probe tomography today. Mater Today 10(12), 3642.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.Google Scholar
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88(15), 154103/154101154103/154103.Google Scholar
Ernst, N. (1979). Experimental investigation on field evaporation of singly and doubly charged rhodium. Surf Sci 87(2), 469482.Google Scholar
Forbes, R.G. (1976). A generalized theory of standard field ion appearance energies. Surf Sci 61(1), 221240.Google Scholar
Gault, B., Mottay, E., Courjaud, A., Vurpillot, F., Bostel, A., Menand, A. & Deconihout, B. (2007a). Ultrafast laser assisted field evaporation and atom probe tomography applications. J Phys: Conf Ser 59, 132135.Google Scholar
Gault, B., Vella, A., Vurpillot, F., Menand, A., Blavette, D. & Deconihout, B. (2007b). Optical and thermal processes involved in ultrafast laser pulse interaction with a field emitter. Ultramicroscopy 107(9), 713719.Google Scholar
Gerstner, V., Thon, A. & Pfeiffer, W. (2000). Thermal effects in pulsed laser assisted scanning tunneling microscopy. J Appl Phys 87(5), 25742580.Google Scholar
Gomer, R. (1959). Field desorption. J Chem Phys 31, 341345.Google Scholar
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge, MA: Harvard University Press.Google Scholar
Gomer, R. & Swanson, L.W. (1963). Theory of field desorption. J Chem Phys 38, 16131629.CrossRefGoogle Scholar
Grafstrom, S. (2002). Photoassisted scanning tunneling microscopy. J Appl Phys 91(4), 17171753.Google Scholar
Hall, T.M., Wagner, A. & Seidman, D.N. (1977). A computer-controlled time-of-flight atom-probe field-ion microscope for the study of defects in metals. J Phys E 10(9), 884893.Google Scholar
Haydock, R. & Kingham, D.R. (1980). Post-ionization of field-evaporated ions. Phys Rev Lett 44(23), 15201523.Google Scholar
Herschitz, R. & Seidman, D.N. (1983). A quantitative atom-probe field-ion microscope study of the compositions of dilute cobalt-niobium and cobalt-iron alloys. Surf Sci 130(1), 6388.Google Scholar
Kellogg, G.L. (1981a). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52(8), 53205328.Google Scholar
Kellogg, G.L. (1981b). Experimental evidence for multiple post-ionization of field-evaporated ions. Phys Rev B 24(4), 18481851.Google Scholar
Kellogg, G.L. (1982). Measurement of the charge state distribution of field evaporated ions: Evidence for post-ionization. Surf Sci 120(2), 319333.Google Scholar
Kellogg, G.L. (1987). Pulsed-laser atom probe mass spectroscopy. J Phys E 20(2), 125136.Google Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51(2), 11841193.CrossRefGoogle Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62(1–2), 2942.Google Scholar
Kelly, T.F. & Larson, D.J. (2000). Local electrode atom probes. Mater Charact 44(1/2), 5985.Google Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101/031101031101/031120.Google Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.Google Scholar
Larson, D.J., Petford-Long, A.K., Ma, Y.Q. & Cerezo, A. (2004). Information storage materials: Nanoscale characterisation by three-dimensional atom probe analysis. Acta Mat 52(10), 28472862.Google Scholar
Lee, M.J.G., Reifenberger, R., Robins, E.S. & Lindenmayr, H.G. (1980). Thermally enhanced field emission from a laser-illuminated tungsten tip: Temperature rise of tip. J Appl Phys 51(9), 49965006.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Clarendon Press.Google Scholar
Miller, M.K. & Smith, G.D.W. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Pittsburgh, PA: MRS.Google Scholar
Müller, E.W. (1956). Field desorption. Phys Rev 102, 618624.Google Scholar
Müller, E.W. & Krishnaswamy, S.V. (1976). High ionic charges in field-evaporating 5d transition metals. Phys Rev Lett 37(15), 10111014.Google Scholar
Müller, E.W. & Tsong, T.T. (1969). Field Ion Microscopy. New York: American Elsevier Publishing Company.Google Scholar
Nakamura, S. & Kuroda, T. (1977). Ionization states of ions field-evaporated from the refractory metal alloys. Jpn J Appl Phys 16(8), 14991500.Google Scholar
Parratt, L.G. (1966). Probability and Experimental Errors in Science. New York: John Wiley.Google Scholar
Schmuck, C., Danoix, F., Caron, P., Hauet, A. & Blavette, D. (1996). Atomic scale investigation of ordering and precipitation processes in a model Ni-Cr-Al alloy. Appl Surf Sci 94–5, 273279.Google Scholar
Seidman, D.N. (2007a). Perspective: From field-ion microscopy of single atoms to atom-probe tomography: A journey. Rev Sci Instrum 78(3), 030901/030901030901/030903.Google Scholar
Seidman, D.N. (2007b). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.Google Scholar
Smith, G.D.W., Grovenor, C.R.M., Delargy, K.M., Godfrey, T.J. & McCabe, A.R. (1982). Direct comparison of performance of atom probe in pulsed-laser and voltage-pulsed modes. IFES Proc 283289.Google Scholar
Southon, M.J. (1968). Field emission and field ionization. In Field-Ion Microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 627. New York: Plenum Press.Google Scholar
Sudbrack, C.K. (2004). Ph.D. Thesis. Decomposition Behavior in Model Nickel-Aluminum-Chromium-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale. Evanston, IL: Northwestern University.Google Scholar
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2006a). Direct observations of nucleation in a nondilute multicomponent alloy. Phys Rev B 73(21), 212101/212101212101/212104.CrossRefGoogle Scholar
Sudbrack, C.K., Noebe, R.D. & Seidman, D.N. (2007). Compositional pathways and capillary effects during early-stage isothermal precipitation in a nondilute Ni-Al-Cr alloy. Acta Mat 55, 119130.Google Scholar
Sudbrack, C.K., Yoon, K.E., Noebe, R.D. & Seidman, D.N. (2006b). Temporal evolution of the nanostructure and phase compositions in a model Ni-Al-Cr alloy. Acta Mat 54(12), 31993210.Google Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.Google Scholar
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy. Cambridge, UK: Cambridge University Press.Google Scholar
Tsong, T.T. & Müller, E.W. (1970). Field evaporation rates of tungsten. Phys Stat Sol A 1(3), 513533.Google Scholar
Vella, A., Vurpillot, F., Gault, B., Menand, A. & Deconihout, B. (2006). Evidence of field evaporation assisted by nonlinear optical rectification induced by ultrafast laser. Phys Rev B 73(16), [165416/165411165416/165417].Google Scholar
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88(9), [094105/094101094105/094103].Google Scholar
Wada, M. (1984). On the thermally activated field evaporation of surface atoms. Surf Sci 145(2–3), 451465.Google Scholar
Yamamoto, M. & Seidman, D.N. (1982). Quantitative compositional analyses of ordered platinum-cobalt (Pt3Co) by atom-probe field-ion microscopy. Surf Sci 118(3), 535554.Google Scholar
Yamamoto, M. & Seidman, D.N. (1983). The quantitative compositional analysis and field-evaporation behavior of ordered nickel-molybdenum (Ni4Mo) on an atomic plane-by-plane basis: An atom-probe field-ion microscope study. Surf Sci 129(2–3), 281300.Google Scholar
Yoon, K.E. (2004). Ph.D. Thesis. Temporal Evolution of the Chemistry and Nanostructure of Multicomponent Model Nickel-Based Superalloys. Evanston, IL: Northwestern University.Google Scholar
Zemansky, M.W. (1957). Heat and Thermodynamics, 4th ed., pp. 326327. New York: McGraw-Hill Book Company.Google Scholar