Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T01:00:22.139Z Has data issue: false hasContentIssue false

Nondestructive Spectrometric Study on a Radioactive Particle Embedded in a Marine Sediment

Published online by Cambridge University Press:  04 July 2008

Marek Bielewski*
Affiliation:
European Commission—DG JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Jerome Himbert
Affiliation:
European Commission—DG JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Nedialka Niagolova
Affiliation:
European Commission—DG JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
Gerald Falkenberg
Affiliation:
HASYLAB, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
Mats Eriksson
Affiliation:
IAEA-MEL, 4 Quai Antoine 1er, MC 98000, Monaco
Maria Betti
Affiliation:
European Commission—DG JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A radioactive particle embedded in a sediment collected from the Irish Sea was examined with spectrometric methods to understand the potential bioavailability of its constituents. Images of the particle surface were acquired in the backscattering mode by scanning electron microscopy. The elemental composition of the particle surface layer was measured using energy dispersive (SEM-EDX) and wavelength dispersive (SEM-WDX) X-ray spectrometers. The investigation showed that the sample consists of a calcite matrix in which uranium is present in the form of separate inclusions. The diameter of U inclusions was less than 10 μm. Synchrotron radiation based X-ray fluorescence in confocal geometry (confocal μ-XRF) was used to determine the spatial distribution of elements in the particle. Three-dimensional reconstructions of the Ca, Cr, Mn, Fe, Zn, Sr, Ba, Pb, and U distributions were performed. The oxidation state of uranium in the different inclusions was determined by synchrotron radiation based X-ray absorption in confocal geometry (confocal μ-XANES). The isotopic composition of uranium was measured by secondary ion mass spectrometry. The results revealed that uranium was depleted in 235U. Pu and other actinides were not detected.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Conradson, S. (2000). XAFS—A technique to probe local structure. Los Alamos Sci 26, 422435.Google Scholar
Conradson, S., Clark, D., Neu, M., Runde, W. & Tait, D. (2000). Characterizing the plutonium aquo ions by XAFS spectroscopy. Los Alamos Sci 26, 418421.Google Scholar
Denecke, M., Janssens, K., Proost, K., Rothe, J. & Noseck, U. (2005). Confocal micro-XRF and micro-XAFS studies of uranium speciation in a tertiary sediment from a waste disposal natural analogue site. Environ Sci Technol 39, 20492058.CrossRefGoogle Scholar
Denecke, M., Somogyi, A., Janssens, K., Simon, R., Dardenne, K. & Noseck, U. (2007). Microanalysis (micro-XRF, micro-XANES and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation. Microsc Microanal 13, 165172.CrossRefGoogle ScholarPubMed
Eriksson, M., Osán, J., Jernström, J., Wegrzynek, D., Simon, R., Chinea-Cano, E., Markowicz, A., Bamford, S., Tamborini, G., Török, S., Falkenberg, G., Alsecz, A., Dahlgaard, H., Wobrauschek, P., Streli, C., Zoeger, N. & Betti, M. (2005). Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Spectrochim Acta B 60, 455469.CrossRefGoogle Scholar
IAEA Laboratories Seibersdorf (2005). QXAS manual. XRF group. Available at http://www.iaea.org/OurWork/ST/NA/NAAL/pci/ins/xrf/downloads/QXAS_Manual.pdf, accessed November 5, 2007.Google Scholar
Janssens, K., Proost, K. & Falkenberg, G. (2004). Confocal microscopic X-ray fluorescence at Hasylab microfocus beamline: Characteristics and possibilities. Spectrochim Acta B 59, 16371645.CrossRefGoogle Scholar
Jernström, J., Eriksson, M., Osán, J., Tamborini, G., Török, S., Simon, R., Falkenberg, G., Alsecz, A. & Betti, M. (2004). Non-destructive characterization of low radioactive particles from Irish Sea sediment by micro X-ray synchrotron radiation techniques: Micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) spectroscopy. J Anal At Spectrom 19, 14281433.CrossRefGoogle Scholar
Jernström, J., Eriksson, M., Simon, R., Tamborini, G., Bildstein, O., Carlos Marquez, R., Kehl, S.R., Hamilton, T.F., Ranebo, Y. & Betti, M. (2006). Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques. Spectrochim Acta B 61, 971979.CrossRefGoogle Scholar
Osán, J., Török, B., Török, S. & Jones, K.W. (1997). Study on the chemical state of toxic metals during the life cycle of fly ash using X-ray absorption near edge structure. X-ray Spectrom 26, 3744.3.0.CO;2-G>CrossRefGoogle Scholar
R Development Core Team (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. Available at http://www.R-project.org, accessed November 5, 2007.Google Scholar
Ranebo, Y., Eriksson, M., Tamborini, G., Niagolova, N., Bildstein, O. & Betti, M. (2007). The use of SIMS and SEM for the characterization of individual particles with a matrix originating from a nuclear weapon. Microsc Microanal 13, 179190.CrossRefGoogle ScholarPubMed
Salbu, B., Krekling, T., Lind, O.C., Oughton, D.H., Drakopulos, M., Simionovici, A., Snigireva, I., Snigirev, A., Weitkamp, T., Adams, F., Janssens, K. & Kashparov, V.A. (2001). High energy X-ray microscopy for characterization of fuel particles. Nucl Instrum Methods Phys Res A 467–468, 12491252.CrossRefGoogle Scholar
Van Espen, P., Janssens, K. & Nobels, J. (1986). AXIL-PC, software for the analysis of complex X-ray spectra. Chemometr Intell Lab Sys 1, 109114.CrossRefGoogle Scholar