Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-31T23:37:08.153Z Has data issue: false hasContentIssue false

Nitrogen Gas Field Ion Source (GFIS) Focused Ion Beam (FIB) Secondary Electron Imaging: A First Look

Published online by Cambridge University Press:  10 May 2017

Marek E. Schmidt*
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
Anto Yasaka
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan Hitachi High-Tech Science Corp., 36-1 Takenoshita, Oyama-cho, 410-1393, Japan
Masashi Akabori
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
Hiroshi Mizuta
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan Nano Research Group, University of Southampton, Highfield, Southampton, SO17 1BJ, UK Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor, Malaysia
*
*Corresponding author. [email protected]
Get access

Abstract

The recent technological advance of the gas field ion source (GFIS) and its successful integration into systems has renewed the interest in the focused ion beam (FIB) technology. Due to the atomically small source size and the use of light ions, the limitations of the liquid metal ion source are solved as device dimensions are pushed further towards the single-digit nanometer size. Helium and neon ions are the most widely used, but a large portfolio of available ion species is desirable, to allow a wide range of applications. Among argon and hydrogen, $${\rm N}_{2}^{{\plus}} $$ ions offer unique characteristics due to their covalent bond and their use as dopant for various carbon-based materials including diamond. Here, we provide a first look at the $${\rm N}_{2}^{{\plus}} $$ GFIS-FIB enabled imaging of a large selection of microscopic structures, including gold on carbon test specimen, thin metal films on insulator and nanostructured carbon-based devices, which are among the most actively researched materials in the field of nanoelectronics. The results are compared with images acquired by He+ ions, and we show that $${\rm N}_{2}^{{\plus}} $$ GFIS-FIB can offer improved material contrast even at very low imaging dose and is more sensitive to the surface roughness.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aramaki, F., Kozakai, T., Matsuda, O., Takaoka, O., Sugiyama, Y., Oba, H., Aita, K. & Yasaka, A. (2012). Photomask repair technology by using gas field ion source. Proc. SPIE 8441, 84410D84410D-6.Google Scholar
Aramaki, F., Kozakai, T., Matsuda, O., Yasaka, A., Yoshikawa, S., Kanno, K., Miyashita, H. & Hayashi, N. (2014). Performance of GFIS mask repair system for various mask materials. Proc SPIE 9235, 92350F92350F–8.Google Scholar
Bell, D.C. (2009). Contrast mechanisms and image formation in helium ion microscopy. Microsc Microanal 15, 147153.Google Scholar
Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J.R. & Marcus, C.M. (2009). Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301.Google Scholar
Bethe, H. (1941). On the theory of secondary emission. Proceedings of the American Physical Society, Minutes of the Washington, D.C., Meeting, vol. 59, Washington, DC.Google Scholar
Calder, R., Dominichini, G. & Hilleret, N. (1986). Influence of various vacuum surface treatments on the secondary electron yield of niobium. Nucl Instrum Meth B 13, 631636.Google Scholar
Cazaux, J. (2006). E-induced secondary electron emission yield of insulators and charging effects. Nucl Instrum Meth B 244, 307322.Google Scholar
Cybart, S.A., Cho, E.Y., Wong, T.J., Wehlin, B.H., Ma, M.K., Huynh, C. & Dynes, R.C. (2015). Nano Josephson superconducting tunnel junctions in YBa2Cu3O7–δ directly patterned with a focused helium ion beam. Nat Nanotechnol 10, 598602.Google Scholar
Ferrón, J., Alonso, E.V., Baragiola, R.A. & Oliva-Florio, A. (1981). Dependence of ion-electron emission from clean metals on the incidence angle of the projectile. Phys Rev B 24, 44124419.Google Scholar
Fox, D., Zhou, Y.B., O’Neill, A., Kumar, S., Wang, J.J., Coleman, J.N., Duesberg, G.S., Donegan, J.F. & Zhang, H.Z. (2013). Helium ion microscopy of graphene: Beam damage, image quality and edge contrast. Nanotechnology 24, 335702.CrossRefGoogle ScholarPubMed
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6, 183191.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C. & Lifshin, E. (1981). Scanning Electron Microscopy and X-Ray Microanalysis. Boston, MA: Springer.Google Scholar
Hlawacek, G., Veligura, V., van Gastel, R. & Poelsema, B. (2014). Helium ion microscopy. J Vac Sci Technol B 32, 020801.CrossRefGoogle Scholar
Iberi, V., Vlassiouk, I., Zhang, X.G., Matola, B., Linn, A., Joy, D.C. & Rondinone, A.J. (2015). Maskless lithography and in situ visualization of conductivity of graphene using helium ion microscopy. Sci Rep 5, 11952.Google Scholar
Joy, D.C. (2013). Helium Ion Microscopy, SpringerBriefs in Materials, New York, NY: Springer.Google Scholar
Kalhor, N., Boden, S.A. & Mizuta, H. (2014). Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectron Eng 114, 7077.Google Scholar
Kohama, K., Iijima, T., Hayashida, M. & Ogawa, S. (2013). Tungsten-based pillar deposition by helium ion microscope and beam-induced substrate damage. J Vac Sci Technol B 31, 031802.Google Scholar
Lemme, M.C., Bell, D.C., Williams, J.R., Stern, L.A., Baugher, B.W.H., Jarillo-Herrero, P. & Marcus, C.M. (2009). Etching of graphene devices with a helium ion beam. ACS Nano 3, 26742676.Google Scholar
Livengood, R., Tan, S., Greenzweig, Y., Notte, J. & McVey, S. (2009). Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J Vac Sci Technol B 27, 32443249.Google Scholar
Livengood, R.H., Tan, S., Hallstein, R., Notte, J., McVey, S. & Faridur Rahman, F.H.M. (2011). The neon gas field ion source—A first characterization of neon nanomachining properties. Nucl Instr Meth A 645, 136140.Google Scholar
Morgan, J., Notte, J., Hill, R. & Ward, B. (2006). An introduction to the helium ion microscope. Microscopy Today 14, 2431.Google Scholar
Naitou, Y., Iijima, T. & Ogawa, S. (2015). Direct nano-patterning of graphene with helium ion beams. Appl Phys Lett 106, 033103.Google Scholar
Nakaharai, S., Iijima, T., Ogawa, S., Suzuki, S., Li, S.L., Tsukagoshi, K., Sato, S. & Yokoyama, N. (2013). Conduction tuning of graphene based on defect-induced localization. ACS Nano 7, 56945700.Google Scholar
Ohya, K. (2014). Simulation of insulating-layer charging on a conductive substrate irradiated by ion and electron beams. J Vac Sci Technol B 32, 06FC01.Google Scholar
Ohya, K., Takami, D. & Yamanaka, T. (2011). Modeling of charging effect on ion induced secondary electron emission from nanostructured materials. J Vac Sci Technol B 29, 06F901.Google Scholar
Ohya, K. & Yamanaka, T. (2013). Modeling secondary electron emission from nanostructured materials in helium ion microscope. Nucl Instrum Meth B 315, 295299.Google Scholar
Petrov, Y. & Vyvenko, O. (2011). Secondary electron emission spectra and energy selective imaging in helium ion microscope. Proc SPIE 8036, 80360O80361O-10.Google Scholar
Petrov, Y.V., Vyvenko, O.F. & Bondarenko, A.S. (2010). Scanning helium ion microscope: Distribution of secondary electrons and ion channeling. J Synch Invest 4, 792795.Google Scholar
Postek, M.T. & Vladár, A.E. (2008). Helium ion microscopy and its application to nanotechnology and nanometrology. Scanning 30, 457462.Google Scholar
Rahman, F.H.M., McVey, S., Farkas, L., Notte, J.A., Tan, S. & Livengood, R.H. (2012). The Prospects of a subnanometer focused neon ion beam. Scanning 34, 129134.Google Scholar
Ramachandra, R., Griffin, B. & Joy, D. (2009). A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748757.Google Scholar
Renoud, R., Attard, C., Ganachaud, J.P., Bartholome, S. & Dubus, A. (1998). Influence on the secondary electron yield of the space charge induced in an insulating target by an electron beam. J Phys Condens Matter 10, 5821.Google Scholar
Sanford, C.A., Stern, L., Barriss, L., Farkas, L., DiManna, M., Mello, R., Maas, D.J. & Alkemade, P.F.A. (2009). Beam induced deposition of platinum using a helium ion microscope. J Vac Sci Technol B 27, 26602667.Google Scholar
Schmidt, M.E., Xu, C., Cooke, M., Mizuta, H. & Chong, H.M.H. (2014). Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline graphene. Mater Res Express 1, 025031.Google Scholar
Schmidt, M.E., Zhang, X., Oshima, Y., The Anh, L., Yasaka, A., Kanzaki, T., Muruganathan, M., Akabori, M., Shimoda, T. & Mizuta, H. (2017). Interaction study of nitrogen ion beam with silicon. J Vac Sci Technol B 35, 03D101.Google Scholar
Schwierz, F. (2010). Graphene transistors. Nat Nanotechnol 5, 487496.CrossRefGoogle ScholarPubMed
Scipioni, L., Sanford, C.A., Notte, J., Thompson, B. & McVey, S. (2009). Understanding imaging modes in the helium ion microscope. J Vac Sci Technol B 27, 32503255.Google Scholar
Seah, M.P. & Dench, W.A. (1979). Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf Interface Anal 1, 211.Google Scholar
Shih, A., Yater, J., Hor, C. & Abrams, R. (1997). Secondary electron emission studies. Appl Surf Sci 111, 251258.Google Scholar
Smith, D.A., Joy, D.C. & Rack, P.D. (2010). Monte Carlo simulation of focused helium ion beam induced deposition. Nanotechnology 21, 175302.Google Scholar
Sun, J., Wang, W., Muruganathan, M. & Mizuta, H. (2014). Low pull-in voltage graphene electromechanical switch fabricated with a polymer sacrificial spacer. Appl Phys Lett 105, 033103.Google Scholar
Tan, S., Livengood, R., Shima, D., Notte, J. & McVey, S. (2010). Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications. J Vac Sci Technol B 28, C6F15C6F21.Google Scholar
Timilsina, R., Smith, D.A. & Rack, P.D. (2013). A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations. Nanotechnology 24, 115302.Google Scholar
Yasaka, A., Aramaki, F., Muramatsu, M., Kozakai, T., Matsuda, O., Sugiyama, Y., Doi, T., Takaoka, O., Hagiwara, R. & Nakamae, K. (2008). Image quality improvement in focused ion beam photomask repair system. J Vac Sci Technol B 26, 21212123.Google Scholar
Zhou, Y., O’Connell, R., Maguire, P. & Zhang, H. (2014). High throughput secondary electron imaging of organic residues on a graphene surface. Sci Rep 4, 7032.Google Scholar
Ziegler, J.F., Ziegler, M.D. & Biersack, J.P. (2010). SRIM – The stopping and range of ions in matter (2010). Nucl Instrum Meth B 268, 18181823.Google Scholar
Supplementary material: PDF

Schmidt supplementary material

Schmidt supplementary material 1

Download Schmidt supplementary material(PDF)
PDF 669.2 KB