Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T00:09:56.816Z Has data issue: false hasContentIssue false

New Methods of Morphometric Analyses on Scyphozoan Jellyfish Statoliths Including the first Direct Evidence for Statolith Growth Using Calcein as a Fluorescent Marker

Published online by Cambridge University Press:  27 March 2017

Ilka Sötje*
Affiliation:
Zoological Institute, Faculty of Mathematics, Informatics and Natural Science, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
Tamar Dishon
Affiliation:
The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
Frank Hoffmann
Affiliation:
Department of Chemistry, Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
Sabine Holst
Affiliation:
German Center for Marine Biodiversity Research, Senckenberg am Meer, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

Statoliths are the only hard structures in the gelatinous bell of most scyphozoan medusae and investigations on these structures could promote investigations of the understudied population dynamics and phylogeny of jellyfish. We examined the statoliths of Aurelia aurita jellyfish of different ages by light microscopic and microtomographic measurements supplemented by scanning electron microscopy. The morphometric analyses confirmed that statolith numbers and sizes increase during jellyfish development and revealed that newly-formed statoliths had similar shapes that may change during statolith growth. Nevertheless, most statoliths had a typical compact rod shape with an aspect ratio of 1–2.5 at all ages and we suggest that the composition of statolith shapes may be taxa specific. We developed a new approach allowing exact measurements of statolith growth for the first time. The application of calcein as a fluorescent marker resulted in clear fluorescent lines within the statoliths, allowing calculations of the statolith side face growth increments (0.1 µm/day; n=252). A single-crystal analysis revealed that the calcein incubation did not affect the statolith crystal structure. In conclusion, calcein labeling is an excellent method to follow the growth of bassanite statoliths.

Type
Biological Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agilent Technologies (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, CA.Google Scholar
Arai, M.N. (1997). A Functional Biology of Scyphozoa. London: Chapman & Hall.Google Scholar
Becker, A., Sötje, I., Paulmann, C., Beckmann, F., Donath, T., Boese, R., Prymak, O., Tiemann, H. & Epple, M. (2005). Calcium sulfate hemihydrate is the inorganic mineral in statoliths of scyphozoan medusae (Cnidaria). Dalton Trans 8, 15451550.CrossRefGoogle Scholar
Bernhard, J.M., Blanks, J.K., Hintz, C.J. & Chandler, G.T. (2004). Use of the fluorescent calcite marker calcein to label foraminiferal tests. J Foraminiferal Res 34, 96101.CrossRefGoogle Scholar
Boßelmann, F., Epple, M., Sötje, I. & Tiemann, H. (2007). Statoliths of calcium sulfate hemihydrate are used for gravity sensing in rhopaliophoran medusae (Cnidaria). In Biomineralisation: Biological Aspects and Structure Formation, Bauerlein, E. (Ed.), pp. 261272. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Borchart-Ott, W. & Gould, R.O. (2011). Crystallography: An Introduction. New York, NY: Springer.Google Scholar
Brahmi, C., Meibom, A., Smith, D.C., Stolarski, J., Auzoux-Bordenave, S., Nouet, J., Doumenc, D., Djediat, C. & Domart-Coulon, I. (2010). Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia . Coral Reefs 29, 175189.CrossRefGoogle Scholar
Bruker (2014). SHEXTL 2014. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Buddemeier, R.W., Maragos, J.E. & Knutson, D.W. (1974). Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J exp mar Biol Ecol 14, 179200.CrossRefGoogle Scholar
Campana, S.E. & Thorrold, S.R. (2001). Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58, 3038.CrossRefGoogle Scholar
Chapman, D.M. (1985). X-ray microanalysis of selected coelenterate statoliths. J Mar Biol Assoc U K 65, 617627.CrossRefGoogle Scholar
Dawson, M.N. (2003). Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar Biol 144, 122.Google Scholar
Dong, Z., Liu, Z. & Liu, D. (2015). Genetic characterization of the scyphozoan Aurelia spp. in Chinese coastal waters using mitochondrial markers. Biochem Syst Ecol 60, 1523.CrossRefGoogle Scholar
Du, S.J., Frenkel, V., Kindschi, G. & Zohar, Y. (2001). Visualizing normal and defective bone development in Zebrafish embryos using fluorescent chromophore calcein. Dev Biol 238, 239246.CrossRefGoogle ScholarPubMed
Fujikura, K., Okoshi, K. & Naganuma, T. (2003). Strontium as a marker for estimation of microscopic growth rates in a bivalve. Mar Ecol Prog Ser 257, 295301.CrossRefGoogle Scholar
Gay, P. (1965). Some crystallographic studies in the system CaSO4-CaSO4·2H2O II. The hydrous forms. Mineral Mag 35, 354362.Google Scholar
Goldstein, J. & Riisgård, H.U. (2016). Population dynamics and factors controlling somatic degrowth of the common jellyfish, Aurelia aurita, in a temperate semi-enclosed cove (Kertinge Nor, Denmark). Mar Biol 163, 112.CrossRefGoogle Scholar
Gordon, M., Hatcher, C. & Seymour, J. (2004). Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530/531, 339345.CrossRefGoogle Scholar
Gordon, M. & Seymour, J. (2012). Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: A contribution to understanding jellyfish ecology. PLoS ONE 7, 111.CrossRefGoogle ScholarPubMed
Hamner, W.M. & Jenssen, R.M. (1974). Growth, degrowth, and irreversible cell differentiation in Aurelia aurita . Am Zool 14, 833849.CrossRefGoogle Scholar
Holst, S. (2012). Morphology and development of benthic and pelagic life stages of North Sea jellyfish (Scyphozoa, Cnidaria) with special emphasis on the identification of ephyra stages. Mar Biol 159, 27072722.CrossRefGoogle Scholar
Holst, S. & Laakmann, S. (2014). Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. J Plankton Res 36, 4863.CrossRefGoogle Scholar
Holst, S., Michalik, P., Noske, M., Krieger, J. & Sötje, I. (2016). Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with emphasis on scyphozoan and cubozoan statoliths. J Plankton Res 38, 12251242.CrossRefGoogle Scholar
Holst, S., Sötje, I., Tiemann, H. & Jarms, G. (2007). Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151, 16951710.CrossRefGoogle Scholar
Hopf, J.K. & Kingsford, M.J. (2013 ). The utility of statoliths and bell size to elucidate age and condition of a scyphomedusa (Cassiopea sp.). Mar Biol 160, 951960.CrossRefGoogle Scholar
Kaehler, S. & McQuaid, C.D. (1999). Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna . Mar Biol 133, 455460.CrossRefGoogle Scholar
Kawamura, M., Ueno, S., Iwanage, S., Oshiro, N. & Kubota, S. (2003). The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) for Okinaw Island, Japan. Plankton Biol Ecol 50, 3742.Google Scholar
Klein, S.G., Pitt, K.A., Rathjen, K.A. & Seymore, J.E. (2014). Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Change Biol 20, 2837.CrossRefGoogle ScholarPubMed
Lartaud, F., Pareige, S., De Rafelis, M., Feuillassier, L., Bideau, M., Peru, E., Romans, P., Alcala, F. & Le Bris, N. (2013). A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26, 187196.CrossRefGoogle Scholar
Leips, J., Baril, C.T., Rodd, F.H., Reznick, D.N., Bashey, F., Visser, G.J. & Travis, J. (2001). The suitability of calcein to mark poeciliid fish and a new method of detection. Trans Am Fish Soc 130, 501507.2.0.CO;2>CrossRefGoogle Scholar
Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, ii, Editio decima, reformata, 824pp. Holmiae: Laurentius Salvius.Google Scholar
Mohler, J.W. (2003). Producing fluorescent marks on Atlantic salmon fin rays and scales with calcein via osmotic induction. N Am J Fish Manage 23, 11081113.CrossRefGoogle Scholar
Möller, H. (1980). Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Mar Biol 60, 123128.CrossRefGoogle Scholar
Mooney, C. & Kingsford, M.J. (2016). Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes. PlosOne 11(5), e0155719.CrossRefGoogle ScholarPubMed
Moran, A. & Marko, P.B. (2005). A simple technique for physical marking of larvae of marine bivalves. BioOne 24, 567571.Google Scholar
Moran, A.L. (2000). Calcein as a marker in experimental studies newly-hatched gastropods. Mar Biol 137, 893898.CrossRefGoogle Scholar
Prymak, O., Tiemann, H., Sötje, I., Marxen, J.C., Klocke, A., Kahl-Nieke, B., beckmann, F., Donath, T. & Epple, M. (2005). Application of synchrotron-radiation-based computer microtomography (SRICT) to selected biominerals: Embryonic snails, statoliths of medusae, and human teeth. J Biol Inorg Chem 10, 588695.CrossRefGoogle ScholarPubMed
Rodhouse, P.G. & Hatfield, E.M.C. (1990). Age determination in squid using statolith growth increments. Fish Res 8, 323334.CrossRefGoogle Scholar
Schmidt, H., Paschke, I., Freyer, D. & Voigt, W. (2011). Water channel structure of bassanite at high air humidity: Crystal structure of CaSO4·0.625 H2O. Acta Crystallogr B 67, 467475.CrossRefGoogle Scholar
Sheldrick, G.M. (2008). A short history of SHELX. Acta Crystallogr A A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015). Crystal structure refinement with SHELXL . Acta Crystallogr C C71, 38.CrossRefGoogle Scholar
Sötje, I., Neues, F., Epple, M., Ludwig, W., Rack, A., Gordon, M., Boese, R. & Tiemann, H. (2011). Comparison of the statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): A phylogenetic approach. Mar Biol 158, 11491161.CrossRefGoogle Scholar
Spangenberg, D.B. & Beck, C.W. (1968). Calcium sulfate dihydrate statoliths in Aurelia . Trans Am Microsc Soc 87, 329335.CrossRefGoogle Scholar
Tambutté, E., Tambutté, S., Segonds, N., Zoccola, D., Venn, A., Erez, J. & Allemand, D. (2011). Calcein labelling and electrophysiology: Insights on coral tissue permeability and calcification. Proc R Soc B 279, 1927.CrossRefGoogle ScholarPubMed
Thébault, J., Chauvaud, L., Clavier, J., Fichez, R. & Morize, E. (2006). Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar Biol 149, 257267.CrossRefGoogle Scholar
Tiemann, H., Sötje, I., Becker, A., Jarms, G. & Epple, M. (2006). Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zool Anz 245, 1317.CrossRefGoogle Scholar
Tiemann, H., Sötje, I., Jarms, G., Paulmann, C., Epple, M. & Hasse, B. (2002). Calcium sulfate hemihydrate in statoliths of deep-sea medusae. Dalton Trans 7, 12661268.CrossRefGoogle Scholar
Ueno, S., Imai, C. & Mitsutani, A. (1995). Fine growth rings found in statolith of a cubomedusa Carybdea rastoni . J Plankton Res 17, 13811384.CrossRefGoogle Scholar
Ueno, S., Imai, C. & Mitsutani, A. (1997). Statolith formation and increment in Carybdea rastoni Haake, 1886 (Scyphozoa: Cubomedusae): Evidence of synchronization with semilunar rhythms. In Proceedings of the 6th International Conference on Coelenterate Biology, Den Hartog, J.C. (Ed.), pp. 491496. The Leeuwenhorst, Noordwijkerhout: Nationaal Natuurhistorsch Museum.Google Scholar
Venn, A.A., Tambutté, E., Holcomb, M., Allemand, D. & Tambutté, S. (2013). Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. PNAS 110, 16341639.CrossRefGoogle ScholarPubMed
Weiss, H. & Bräu, M.F. (2009). How much water does calcined gypsum contain? Angew Che Int Edit 48, 35203524.CrossRefGoogle ScholarPubMed
Werner, B. (1984). Stamm Cnidaria, Nesseltiere. In Lehrbuch der speziellen Zoologie, Kaestner, A. (Ed.), pp. 11305. Stuttgart: Fischer.Google Scholar
Winans, A.K. & Purcell, J.E. (2010). Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata . Hydobiologia 645, 3952.CrossRefGoogle Scholar
Supplementary material: File

Sötje supplementary material S1

Supplementary Table

Download Sötje supplementary material S1(File)
File 17.8 KB
Supplementary material: File

Sötje supplementary material S2

Supplementary Table

Download Sötje supplementary material S2(File)
File 40.8 KB