Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T15:56:34.722Z Has data issue: false hasContentIssue false

A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography

Published online by Cambridge University Press:  03 February 2012

Peter J. Felfer*
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
Baptiste Gault
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
Gang Sha
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
Leigh Stephenson
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
Simon P. Ringer
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
Julie M. Cairney
Affiliation:
Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, NSW 2006, Camperdown, Australia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Atom probe tomography (APT) provides three-dimensional analytical imaging of materials with near-atomic resolution using pulsed field evaporation. The processes of field evaporation can cause atoms to be placed at positions in the APT reconstruction that can deviate slightly from their original site in the material. Here, we describe and model one such process—that of preferential retention of solute atoms in multicomponent systems. Based on relative field evaporation probabilities, we calculate the point spread function for the solute atom distribution in the “z,” or in-depth direction, and use this to extract more accurate solute concentration profiles.

Type
Techniques and Software Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkassab, T., Menand, A., Chambreland, S. & Haasen, P. (1992). The early stages of decomposition of Al-Li alloys. Surf Sci 266(1-3), 333336.CrossRefGoogle Scholar
Antczak, G. & Ehrlich, G. (2007). Jump processes in surface diffusion. Surf Sci Rep 62(2), 3961.CrossRefGoogle Scholar
Bassett, D.W. & Webber, P.R. (1978). Diffusion of single adatoms of Pt, Ir and Au on Pt surfaces. Surf Sci 70(1), 520531.CrossRefGoogle Scholar
Blavette, D., Duval, P., Letellier, L. & Guttmann, M. (1996). Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in astroloy nickel base superalloys. Acta Mater 44(12), 49955005.CrossRefGoogle Scholar
Brandon, D.G. (1965). The analysis of field evaporation data from field-ion microscope experiments. British J Appl Phys 16(5), 683688.CrossRefGoogle Scholar
Brandon, D.G. (1966). The field evaporation of dilute alloys. Surf Sci 5(1), 137146.CrossRefGoogle Scholar
Chen, Y.C. & Seidman, D.N. (1971). The field ionization characteristics of individual atomic planes. Surf Sci 27(2), 231255.CrossRefGoogle Scholar
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.CrossRefGoogle Scholar
Felfer, P.J., Ringer, S.P. & Cairney, J.M. (2011). Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis. Ultramicroscopy 111(6), 435439.CrossRefGoogle ScholarPubMed
Flewitt, P.E.J. & Wild, R.K. (2001). Grain Boundaries. West Sussex, UK: Wiley and Sons.Google Scholar
Gault, B., de Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14(4), 296305.CrossRefGoogle Scholar
Gault, B., Haley, D., de Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011). Advances in reconstruction of atom probe tomography data. Ultramicroscopy 111(6), 448457.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., De Geuser, F., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16(1), 99110.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913.CrossRefGoogle Scholar
Grushka, E. (1972). Characterization of exponentially modified Gaussian peaks in chromatography. Anal Chem 44(11), 17331738.CrossRefGoogle ScholarPubMed
Hultgren, R. (1973). Selected Values of the Thermodynamic Properties of Binary Alloys. Materials Park, OH: American Society for Metals.Google Scholar
Jiang, H. & Faulkner, R.G. (1996). Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—I. The model. Acta Mater 44(5), 18571864.CrossRefGoogle Scholar
Kellogg, G.L. (1984). Measurement of activation energies for field evaporation of tungsten ions as a function of electric field. Phys Rev B 29(8), 43044312.CrossRefGoogle Scholar
Kellogg, G.L., Tsong, T.T. & Cowan, P. (1978). Direct observation of surface-diffusion and atomic interactions on metal-surfaces. Surf Sci 70(1), 485519.CrossRefGoogle Scholar
Kellogg, G.L., Wright, A.F. & Daw, M.S. (1991). Surface diffusion and adatom-induced substrate relaxations of Pt, Pd and Ni atoms on Pt(001). J Vac Sci Technol 9(3), 17571760.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78(3), 031101.Google Scholar
Kingham, D.R. (1982). A new view of field evaporation. Vacuum 32(8), 471476.CrossRefGoogle Scholar
Landolt-Bornstein (2011). The Landolt-Bornstein database. Springer Materials. Available at www.springer.com.Google Scholar
Larson, D.J., Petford-Long, A.K., Ma, Y.Q. & Cerezo, A. (2004). Information storage materials: Nanoscale characterisation by three-dimensional atom probe analysis. Acta Mater 52(10), 28472862.CrossRefGoogle Scholar
Lozano-Perez, S., Saxey, D.W., Yamada, T. & Terachi, T. (2010). Atom-probe tomography characterization of the oxidation of stainless steel. Scripta Mater 62(11), 855858.CrossRefGoogle Scholar
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104(8), 084914.CrossRefGoogle Scholar
Maruyama, N., Smith, G.D.W. & Cerezo, A. (2003). Interaction of the solute niobium or molybdenum with grain boundaries in alpha-iron. Mater Sci Eng A 353(1-2), 126132.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. New York: Oxford University Press.CrossRefGoogle Scholar
Miller, M.K. & Smith, G.D.W. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Pittsburg, PA: Materials Research Society.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815824.Google Scholar
Mueller, E.W. (1956). Field desorption. Phys Rev 102(3), 618624.CrossRefGoogle Scholar
Ngamo, M., Duguay, S., Pichler, P., Daoud, K. & Pareige, P. (2010). Characterization of arsenic segregation at Si/SiO2 interface by 3D atom probe tomography. Thin Solid Films 518(9), 24022405.CrossRefGoogle Scholar
Pereloma, E.V., Russell, K.F., Miller, M.K. & Timokhina, I.B. (2008). Effect of pre-straining and bake hardening on the microstructure of thermomechanically processed CMnSi TRIP steels with and without Nb and Mo additions. Scripta Mater 58(12), 10781081.CrossRefGoogle Scholar
Richardson, W.H. (1972). Bayesian-based iterative method of image restoration. J Opt Soc Am 62(1), 5559.CrossRefGoogle Scholar
Seah, M.P. & Hondros, E.D. (1973). Grain-boundary segregation. Proc R Soc London A 335(1601), 191212.Google Scholar
Seidman, D.N., Krakauer, B.W. & Udler, D. (1994). Atomic scale studies of solute-atom segregation at grain boundaries: Experiments and simulations. J Phys Chem Solids 55(10), 10351057.CrossRefGoogle Scholar
Sha, G., Ringer, S.P., Duan, Z.C. & Langdon, T.G. (2009). An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing. Int J Mater Res 100(12), 16741678.CrossRefGoogle Scholar
Suchorski, Y., Schmidt, W.A., Block, J.H. & Kreuzer, H.J. (1994). Comparative studies on field ionization at surface sites of Rh, Ag and Au-differences in local electric field enhancement. Vacuum 45(2-3), 259262.CrossRefGoogle Scholar
Suchorski, Y., Schmidt, W.A., Ernst, N., Block, J.H. & Kreuzer, H.J. (1995). Electrostatic fields above individual atoms. Prog Surf Sci 48(1-4), 121134.Google Scholar
Tamion, A., Cadel, E., Bordel, C. & Blavette, D. (2007). 3D atom probe investigation of (Fe/Dy) magnetic multilayers. Surf Interf Anal 39(2-3), 237239.CrossRefGoogle Scholar
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimisation of laser atom probe for the analysis of nanocomposite films. Ultramicroscopy 110(7), 836843.CrossRefGoogle Scholar
Thuillier, O., Danoix, F., Gounè, M. & Blavette, D. (2006). Atom probe tomography of the austenite-ferrite interphase boundary composition in a model alloy Fe-C-Mn. Scripta Mater 55(11), 10711074.CrossRefGoogle Scholar
Tsong, T.T. (1972). Direct observation of interactions between individual atoms on tungsten surfaces. Phys Rev B 6(2), 417426.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field-ion image-formation. Surf Sci 70(1), 211233.CrossRefGoogle Scholar
Tsong, T.T. & Kellogg, G. (1975). Direct observation of directional walk of single adatoms and adatom polarizability. Phys Rev B 12(4), 13431353.CrossRefGoogle Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D 42(12), 125502.CrossRefGoogle Scholar
Wada, M. (1984). On the thermally activated field evaporation of surface atoms. Surf Sci 145(2-3), 451465.CrossRefGoogle Scholar
Weidow, J. & Andren, H.-O. (2010). Grain and phase boundary segregation in WC-Co with small V, Cr or Mn additions. Acta Mater 58(11), 38883894.CrossRefGoogle Scholar
Wrigley, J.D. & Ehrlich, G. (1980). Surface diffusion by an atomic exchange mechanism. Phys Rev Lett 44(10), 661663.CrossRefGoogle Scholar
Yao, L., Gault, B., Cairney, J.M. & Ringer, S.P. (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90(2), 121129.CrossRefGoogle Scholar