Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:06:49.322Z Has data issue: false hasContentIssue false

A New Approach for Optimal Morphological Identification and Immunolabeling of Spermatogonial Cells

Published online by Cambridge University Press:  16 May 2014

Amanda V. Albuquerque
Affiliation:
Laboratório de Biologia Estrutural e Reprodução, Departamento de Morfologia, Universidade Federal de Minas Gerais, 31.270-901 Belo Horizonte, Brasil
Ana Luiza Drumond
Affiliation:
Laboratório de Biologia Estrutural e Reprodução, Departamento de Morfologia, Universidade Federal de Minas Gerais, 31.270-901 Belo Horizonte, Brasil
Shan Shao
Affiliation:
Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, 77030 Houston, USA
Rossana C.N. Melo
Affiliation:
Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora. 36.036-900 - Juiz de Fora, Brasil
Fernanda R.C.L. Almeida
Affiliation:
Laboratório de Biologia Estrutural e Reprodução, Departamento de Morfologia, Universidade Federal de Minas Gerais, 31.270-901 Belo Horizonte, Brasil
Marvin L. Meistrich
Affiliation:
Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, 77030 Houston, USA
Hélio Chiarini-Garcia*
Affiliation:
Laboratório de Biologia Estrutural e Reprodução, Departamento de Morfologia, Universidade Federal de Minas Gerais, 31.270-901 Belo Horizonte, Brasil
*
*Corresponding author. [email protected]; [email protected]
Get access

Abstract

High quality fixation often inactivates epitopes and gentler fixation can fail to preserve biological structure at the required resolution. For studies of male reproduction, immunofluorescence techniques using paraformaldehyde fixation associated with paraffin as an embedding medium gives good epitope preservation, although the cell becomes morphologically compromised. On the other hand, glutaraldehyde associated with a plastic resin has been used with success to recognize and distinguish each spermatogonial cell subtype, but the antigenic sites become inaccessible to antibodies. Here we describe a new method that provides excellent morphological details of testicular cells while preserving the binding capacity of epitopes. Using a combination of glutaraldehyde and paraformaldehyde as a fixative and LR White resin for embedding, we show that it is possible to clearly recognize spermatogonial subtypes (Aund, A–A4, In and B spermatogonia) on 1-μm thick-sections and to label epitopes such as bromodeoxyuridine, a marker used for cellular cycle studies in the testis. The information gained from this procedure can be critical for understanding spermatogonial process of self-renewal and differentiation.

Type
Techniques and Instrumentation Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, A.V., Almeida, F.R.C.L., Weng, C.C., Shetty, G., Meistrich, M.L. & Chiarini-Garcia, H. (2013). Spermatogonial behavior in rats during radiation-induced arrest and recovery after hormone suppression. Reproduction 146, 363376.Google Scholar
Al-Hazzaa, A.A. & Bowen, I.D. (1998). Improved cytochemical methods for demonstrating cell death using LR White as an embedding medium. Histochem J 30, 897902.CrossRefGoogle ScholarPubMed
Baschong, W., Suetterlin, R. & Laeng, R.H. (2001). Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 49, 15651572.Google Scholar
Bolden-Tiller, O.U., Chiarini-Garcia, H., Poirier, C., Alves-Freitas, D., Weng, C.C., Shetty, G. & Meistrich, M.L. (2007). Genetic factors contributing to defective spermatogonial differentiation in juvenile spermatogonial depletion (Utp14bjsd) mice. Biol Reprod 77, 237246.Google Scholar
Bowdler, A.L., Griffiths, D.F. & Newman, G.R. (1989). The morphological and immunohistochemical analysis of renal biopsies by light and electron microscopy using a single processing method. Histochem J 21, 393402.Google Scholar
Bozzola, J.J. & Russell, L.D. (1999). Electron Microscopy, Sudburt, USA: Jones and Barlett Publishers Inc.Google Scholar
Beier, K. (1992). Light microscopic morphometric analysis of peroxisomes by automatic image analysis: Advantages of immunostaining over the alkaline DAB method. J Histochem Cytochem 40, 115121.Google Scholar
Chiarini-Garcia, H., Hornick, J.R., Griswold, M.D. & Russell, L.D. (2001). Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 65, 11791185.Google Scholar
Chiarini-Garcia, H. & Meistrich, M.L. (2008). High-resolution light microscopic characterization of spermatogonia. Methods Mol Biol 450, 95107.Google Scholar
Chiarini-Garcia, H., Alves-Freitas, D., Barbosa, I.S. & Almeida, F.R.L.C. (2009). Evaluation of the seminiferous epithelial cycle, spermatogonial kinetics and niche in donkeys (Equus asinus). Anim. Reprod. Sci 116, 139154.Google Scholar
Chiarini-Garcia, H., Parreira, G.G. & Almeida, F.R.C.L. (2011). Glycol methacrylate embedding for improved morphological, morphometrical, and immunohistochemical investigations under light microscopy: Testes as a model. Methods Mol Biol 689, 318.Google Scholar
Chiarini-Garcia, H., Raymer, A.M. & Russell, L.D. (2003). Non-random distribution of spermatogonia in rats: Evidence of niches in the seminiferous tubules. Reproduction 126, 669680.Google Scholar
Chiarini-Garcia, H. & Russell, L.D. (2001). High-resolution light microscopic characterization of mouse spermatogonia. Biol Reprod 65, 11701178.CrossRefGoogle ScholarPubMed
Collins, J.S. & Goldsmith, T.H. (1981). Spectral propertires of fluorescence induced by glutaraldehyde fixation. J Histochem Cytochem 29, 411414.Google Scholar
De Rooij, D.L. & Russell, L.D. (2000). All you want to know about spermatogonia and were afraid to ask. J. Androl 21, 776798.CrossRefGoogle Scholar
Derkx, P., Nigg, A.L., Bosman, F.T., Birkenhäger-Frenkel, D.H., Houtsmuller, A.B., Pols, H.A. & Van Leeuwen, J.P. (1998). Immunolocalization and quantification of noncollagenous bone matrix proteins in methylmethacrylate-embedded adult human bone in combination with histomorphometry. Bone 22, 367373.Google Scholar
Dias, F.F., Chiarini-Garcia, H., Parreira, G.G. & Melo, R.C.N. (2011). Mice spermatogonial stem cells transplantation induces macrophage migration into the seminiferous epithelium and lipid body formation: high-resolution ligh microscopy and ultrastructural studies. Microscopy and Microanalysis 17, 10021014.CrossRefGoogle Scholar
Drumond, A.L., Meistrich, M.L., & Chiarini-Garcia, H. (2011). Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142, 145155.CrossRefGoogle ScholarPubMed
Ehmcke, J. & Schlatt, S. (2008). Identification and characterization of spermatogonial subtypes and their expansion in whole mounts and tissue sections from primate testes. Methods Mol Biol 450, 109118.Google Scholar
Erben, R.G. (1997). Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45, 307313.CrossRefGoogle ScholarPubMed
Ghrebi, S.S., Owen, G.R. & Brunette, D.M. (2007). Triton X-100 pretreatment of LR-white thin sections improves immunofluorescence specificity and intensity. Microsc Res Tech 70, 555562.Google Scholar
Itoh, Y., Tanaka, S., Takekoshi, S., Itoh, J. & Osamura, R.Y. (1996). Prohormone convertases (PC1/3 and PC2) in rat and human pâncreas and islet cell tumors: subcelullar immunohistochemical analysis. Pathol Int 46, 726737.CrossRefGoogle Scholar
Jasani, B., Thomas, D.W. & Williams, E.D. (1981). Use of monoclonal antihapten antibodies for immunolocalisation of tissue antigens. J Clin Pathol 34, 10001002.Google Scholar
Karnovsky, M. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27, 137138.Google Scholar
Luby-Phelps, K., Ning, G., Fogerty, J. & Besharse, J.C. (2003). Visualization of identified GFP-expressing cells by light and electron microscopy. J Histochem Cytochem 51, 271274.Google Scholar
Melo, R.C.N., Rosa, P.G., Noyma, N.P., Pereira, W.F., Tavares, L.E.R., Parreira, G.G., Chiarini-Garcia, H. & Roland, F. (2007). Histological approaches for high-quality imaging of zooplanktonic organisms. Micron 38, 714721.CrossRefGoogle ScholarPubMed
Mountjoy, J.R., Xu, W., Mcleod, D., Hyndman, D. & Oko, R. (2008). RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrossomal biogenesis. Biol Reprod 79, 223232.Google Scholar
Nascimento, H.F., Drumond, A.L., França, L.R. & Chiarini-Garcia, H. (2008). Spermatogonial morphology, kinetics and niches in hamsters exposed to short- and long-photoperiod. Int J Androl 32, 486497.Google Scholar
O’Malley, J.T., Merchant, S.N., Burgess, B.J., Jones, D.D. & Adams, J.C. (2009). Effects of fixative and embedding medium on morphology and immunostaining of the cochlea. Audiol Neurootol 14, 7887.Google Scholar
Osamura, R.Y., Itoh, Y. & Matsuno, A. (2000). Applications of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones. J Histochem Cytochem 48, 885891.Google Scholar
Osamura, R.Y., Yasuda, O., Kawakami, T., Itoh, Y., Inada, K. & Kakudo, K. (1997). Immunoelectron microscopic demonstration of regulated pathway for calcitonin and constitutive pathway for carcinoembryonic antigen in the same cells of human medullary carcinomas of thyroid glands. Mod Pathol 10, 711.Google Scholar
Russell, L.D., Chiarini-Garcia, H., Korsmeyer, S.J. & Knudson, C.M. (2002). Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 66, 950958.Google Scholar
Shuttlesworth, G.A., de Rooij, D.G., Huhtaniemi, I., Reissmann, T., Russell, L.D., Shetty, G., Wilson, G. & Meistrich, M.L. (2000). Enhancement of A spermatogonial proliferation and differentiation in irradiated rats by gonadotropin-releasing hormone antagonist administration. Endocrinology 141, 3749.Google Scholar
Weber, K., Rathke, P.C. & Osborn, M. (1978). Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc Natl Acad Sci USA 75, 18201824.Google Scholar
Wu, J., Zhang, Y., Tian, G.G., Zou, K., Lee, C.M., Yu, Q. & Yuan, Z. (2008). Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cell Signal 20, 10521060.Google Scholar
Wynford-Thomas, D., Jasani, B. & Newman, G.R. (1986). Immunohistochemical localization of cell surface receptors using a novel method permitting simple, rapid and reliable LM/EM correlation. Histochem J 18, 387396.Google Scholar
Yang, R., Davies, C.M., Archer, C.W. & Richards, R.G. (2003). Immunohistochemistry of matrix markers in Technovit 9100 New-embedded undecalcified bone sections. Eur Cell Mater 31, 5771.Google Scholar