Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T14:14:26.977Z Has data issue: false hasContentIssue false

Natural or Artificial? Multi-Analytical Study of a Scagliola from Estoi Palace Simulating Imperial Red Porphyry

Published online by Cambridge University Press:  21 November 2016

Maria Teresa Freire*
Affiliation:
Buildings Department, National Laboratory for Civil Engineering, Av. do Brasil, 101, 1700-066 Lisbon, Portugal
António Santos Silva
Affiliation:
Materials Department, National Laboratory for Civil Engineering, Av. do Brasil, 101, 1700-066 Lisbon, Portugal
Maria do Rosário Veiga
Affiliation:
Buildings Department, National Laboratory for Civil Engineering, Av. do Brasil, 101, 1700-066 Lisbon, Portugal
Jorge de Brito
Affiliation:
CERIS-ICIST, Department of Civil Engineering, Architecture and Georresources, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Frank Schlütter
Affiliation:
Department of Analytical Microscopy of Building Materials, Bremen Institute for Materials Testing, Paul-Feller-Straße 1, 28199 Bremen, Germany
*
*Corresponding author.[email protected]
Get access

Abstract

In this paper the characterization of a gypsum plaster sample from the end of the 19th century simulating imperial red porphyry using a multi-analytical approach is presented and discussed. The results of X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TGA-DTA), physical and mechanical properties are summarized. In order to have further insight into the microstructure, polarized light microscopy (PLM), scanning electron microscopy coupled with energy dispersive X-ray spectrometer (SEM-EDS), and micro Raman spectroscopy analyzes were also made. They helped to clarify the main issues raised by the other complementary analytical techniques and allowed the establishment of interrelations between the different properties, providing important information about the materials, the skills, and the technological development involved in the art of imitating noble stones with gypsum pastes. This study also contributes to our knowledge concerning the preservation of these types of elements that are important in the context of European decorative arts and rarely reported in the literature.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arcolao, C. (1998). Le ricette del restauro, 2nd ed. Venezia: Marsilio Editore.Google Scholar
ASTM 4404-84 (2004). Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM, p. 7.Google Scholar
Bakr, A.M., Ali, M.F., Moussa, A. & Said, A. (2012). Characterization of imitated marble used in historical buildings in Cairo–Egypt. Annales Islamologiques 46, 323335.Google Scholar
Bell, I.M., Clark, R.J.H. & Gibbs, P.J. (1997). Raman spectroscopic library of natural and synthetic pigments (pre- ~1850 AD). Spectrochim Acta A Mol Biomol Spectrosc 53, 21592179.CrossRefGoogle Scholar
Burgio, L. & Clark, R.J.H. (2001). Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A Mol Biomol Spectrosc 57, 14911521.CrossRefGoogle ScholarPubMed
Cardoso, I. (2006). 18th Century church altarpieces in the Algarve, Portugal: a comparison of the historical documents to the results of the microscopical analysis. InFocus 4, 6486.CrossRefGoogle Scholar
DGPC. Cartas e convenções internacionais sobre património. Available at: http://www.patrimoniocultural.pt/pt/patrimonio/cartas-e-convencoes-internacionais-sobre-patrimonio/ (Retrieved August 17, 2015).Google Scholar
EN 1015-19:1998 (1998). Methods of Test for Mortar for Masonry. Part 19: Determination of Water Vapour Permeability of Hardened Rendering and Plastering Mortars. Brussels: CEN. p. 16.Google Scholar
EN 12504-4:2007 (2007). Testing concrete in structures. Part 4: Determination of ultrasonic pulse velocity. Brussels: CEN.Google Scholar
Fischer, H.B. & Vtorov, B. (2002). Characterization of historical gypsum mortars. ZKG Int 55(5), 9299.Google Scholar
Freire, T., Santos Silva, A., Veiga, M.R. & Brito, J. de (2009). Characterization of a 19th century decorated gypsum plaster piece: The role of microscopy. In 12th Euroseminar on Microscopy Applied to Building Materials, Middendorf, B., Just, A., Klein, D., Glaubitt; A. & Simon, J. (Eds.), pp. 416427. Dortmund: Technische Universität Dortmund.Google Scholar
Freire, T., Veiga, M.R., Santos Silva, A. & Brito, J. de (2011). Improving the durability of Portuguese historical gypsum plasters using compatible restoration products. In 12th International Conference on Durability of Building Materials and Components, Freitas, V.P. & Corvacho, H. (Eds.), pp. 905913. Porto: FEUP Edições.Google Scholar
Gárate-Rojas, I. (1999). Artes de los Yesos. Yeserias e Estucos. Madrid: Instituto Español de Arquitectura, MRRP, Universidad de Alcalá, Munilla-Lería.Google Scholar
Ghorab, H.Y., Ragai, J. & Antar, A. (1986). Surface and bulk properties of ancient Egyptian mortars. Part I: X-ray diffraction studies. Cem Concr Res 16, 813822.CrossRefGoogle Scholar
Gourdin, W.H. & Kingery, W.D. (1975). The beginnings of pyrotechnology: Neolithic and Egyptian lime plaster. J Field Archaeol 2(1/2), 133150.Google Scholar
Igea, J., Lapuente, P., Blanco-Varela, M.T. & Martínez-Ramírez, S. (2010). Ancient gypsum mortars from Sta. María Magdalena church (Zaragoza, Spain): Advances in technological manufacture. In 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, Válek, J., Groot, C. & Hughes, J.J. (Eds.), pp. 197205. Prague: RILEM Publications S.A.R.L. Google Scholar
Igea, J., Lapuente, P., Martínez-Ramírez, S. & Blanco-Varela, M.T. (2012). Characterization of mudejar mortars from San Gil Abbot church (Zaragoza, Spain): Investigation of the manufacturing technology of ancient gypsum mortars. Mater Constr 62(308), 515529.CrossRefGoogle Scholar
Jakubek, M., Schlütter, F., Oberta, W. & Łukaszewicz, J.W. (2010). Medieval gypsum mortars as a material of architectonic details from the castle of the Teutonic Order in Toruń, Poland. In 2nd Historic Mortars Conference HMC2010 and RILEM TC 203-RHM Final Workshop, Válek, J., Groot, C. & Hughes, J. J. (Eds.), pp. 227237. Prague: RILEM Publications S.A.R.L.Google Scholar
Jordan, P.G., Dügelllin, M., Mathys, D. & Guggenheim, R. (1991). Gypsum-anhydrite differentiation by SEM using backscattered electron-signal. J Sediment Petrol 61(4), 616618.CrossRefGoogle Scholar
Kawiak, T. (1991). Gypsum mortars from a twelfth-century church in Wislica, Poland. Stud Conserv 36, 142150.CrossRefGoogle Scholar
Lucas, G. (2003 a). High-temperature gypsum plaster on historic exteriors? A plea for gypsum. ZKG Int 56(8/9), 7885.Google Scholar
Lucas, G. (2003 b). The special features of high-temperature gypsum mortar as a building material. ZKG Int 56(8/9), 5465.Google Scholar
Magalhães, A.C. & Veiga, M.R. (2007). Hygroscopic characterization of lime based mortars, Report No. 201/2007, LNEC, DED/NRI. Lisbon (in Portuguese).Google Scholar
Mendonça, I. (2012). The ornamental plaster and the appeal of exotic in Portuguese interiors: Domingos Meira and the engravings of Owen Jones. In IV Encontro Luso-Brasileiro de Museus Casa. Rio de Janeiro: Fundação da Casa de Ruy Barbosa (in Portuguese).Google Scholar
Middendorf, B. (2002). Physico-mechanical and microstructural characteristics of historic and restoration mortars based on gypsum: Current knowledge and perspective. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Siegesmund, S., Weiss, T. & Vollbrecht, A. (Eds.). pp. 165176. London: The Geological Society of London.Google Scholar
Pecchioni, E., Malesani, P., Bellucci, B. & Fratini, F. (2005). Artificial stones utilised in florence historical palaces between the XIX and XX centuries. J Cult Herit 6, 227233.CrossRefGoogle Scholar
Philokyprou, M. (2012). The beginnings of pyrotechnology in Cyprus. Int J Archit Herit 6(2), 172199.CrossRefGoogle Scholar
Ragai, J. (1988 a). Surface and bulk properties of ancient egyptian mortars. Part III: X-ray diffraction studies. Cem Concr Res 18, 917.CrossRefGoogle Scholar
Ragai, J. (1988 b). Surface and bulk properties of ancient egyptian mortars. Part IV: Thermal studies. Cem Concr Res 18, 179184.CrossRefGoogle Scholar
Ragai, J. (1989). Surface and bulk properties of ancient egyptian mortars. Part V: Thermal studies (b). Cem Concr Res 19, 4246.CrossRefGoogle Scholar
Ragai, J., Ghorab, H.Y. & Antar, A. (1987). Surface and bulk properties of ancient egyptian mortars. Part II: Adsorption and infrared studies. Cem Concr Res 17, 1221.CrossRefGoogle Scholar
Sanz, D. (2007). Traditional gypsum kilns used in construction industry. ReCoPar, Electronic journal 5, 7684.Google Scholar
Sanz, D. (2009). Analysis of gypsum used in external renders using geological techniques. PhD Thesis, Madrid: Polytechnic University of Madrid (in Spanish).Google Scholar
Schlütter, F., Wolfgang, K. & Juling, H. (2010). High fired gypsum mortar for screeds, terrazzo and masonry repair on historic monuments. Production, properties and sample applications. In 2nd Historic Mortars HMC2010 and RILEM TC 203-RHM Final Workshop, Válek, J., Groot, C. & Hughes, J.J. (Eds.), pp. 11691180. Prague: RILEM Publications S.A.R.L.Google Scholar
Sievert, T, Wolter, A. & Singh, N.B. (2005). Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill. Cem Concr Res 35, 623630.CrossRefGoogle Scholar
Stark, J. & Wicht, B. (1999). The history of gypsum and gypsum plaster. ZKG Int 52(10), 527533.Google Scholar
Syndicat National Des Industries Du Plâtre (1982). Le Plâtre. Physico-Chimie. Fabrication et Emplois. Paris: Eyrolles. (in French).Google Scholar
Tesch, V. & Middendorf, B. (2005). Optimised microstructure of calcium sulphate based mortars for the restoration of historic masonry. In Repair Mortars for Historic Masonry, Groot, C. (Ed.), pp. 345353. Delft: RILEM.Google Scholar
Turco, T. (2008). Il Gesso. Lavorazione, Trasformazione, Impieghi, 2nd ed. Milano: Editore Ulrico Hoepli.Google Scholar
Turriano, J. (1996). The twenty-one books of engineering and machines of Juanelo Turriano: A translation of the manuscript The twenty-one books of engineering and machines in the Biblioteca Nacional, Madrid c.a. 1511-1583, Book 17. Madrid: Doce Calles. pp. 483–500.Google Scholar
Veiga, M.R., Magalhães, A. & Bosilijkov, V. (2004). Capillarity tests on historic mortar samples extracted from site. Methodology and compared results. In 13th International Brick and Block Masonry Conference, Martens, D. & Vermeltfoort, A. (Eds.). Amsterdam: Eindhoven University of Technology.Google Scholar
Vieira, E. (2002). Traditional techniques of stuccos and simulated stucco decorations in the north of Portugal. A contribution to its study and conservation. MSc Thesis. Évora: University of Évora.Google Scholar
Vieira, E. (2008). Traditional techniques of stuccos in Portuguese interior coatings. History and technology. Application to the conservation and restoration. PhD Thesis. Valencia: Polytechnic University of Valencia, Faculty of Fine Arts.Google Scholar
Villanueva, L. (2004). Historical evolution of the gypsum construction. Informes de la Construcción 56(493), 511.CrossRefGoogle Scholar
Vogel, D., Follner, H., Jacobi, H., Kulke, H. & Brokmeier, H.G. (1999). Characterization and reproduction of historical gypsum plasters and comparison with familiar modern preparations. ZKG Int 52(11), 640648.Google Scholar
Wirsching, F. (2005). Calcium Sulfate. In Ullmann’s Encyclopedia of Industrial Chemistry (pp. 133). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar