Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T08:34:10.409Z Has data issue: false hasContentIssue false

Micro-Structural Stability of Micropropagated Plants of Vitex negundo L.

Published online by Cambridge University Press:  16 April 2021

M. Manokari
Affiliation:
Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India Siddha Clinical Research Unit, Central Council for Research in Siddha, Palayamkottai600106, Tamil Nadu, India
S. Priyadharshini
Affiliation:
Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
Mahipal S. Shekhawat*
Affiliation:
Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
*
*Author for correspondence: Mahipal S. Shekhawat, E-mail: [email protected]
Get access

Abstract

Micropropagation techniques allow producing large numbers of clones of genetically identical plants. However, there is evidence of disorders in internal structures due to sophisticated in vitro conditions. Such variations are responsible for the mortality of plantlets in the field and cause huge loss to the tissue culture industry. Anatomical evaluation at different growth conditions allows for understanding structural repair of in vitro raised plantlets. Therefore, the present study was aimed to identify the structural changes that occurred in micropropagated plants of Vitex negundo under heterotrophic, photomixotrophic, and photoautotrophic conditions. To achieve this, structural variations were analyzed in the plantlets obtained from in vitro, greenhouse and field transferred stages using light microscopy. Underdeveloped dermal tissues, palisade cells, intercellular spaces, mechanical tissues, vascular bundles, and ground tissues were observed with the plants growing under in vitro conditions. The self-repairing of structural disorders and transitions in vegetative anatomy was observed during hardening under the greenhouse environment. Field transferred plantlets were characterized by well-developed internal anatomy. These findings showed that the micropropagated plantlets of V. negundo were well-adapted through a series of self-repairing the in vitro induced structural abnormalities at the subsequent stages of plant development.

Type
Micrographia
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afreen, F (2005). Physiological and anatomical characteristics of in vitro photoautotrophic plants. In Photoautotrophic (Sugar-Free Medium) Micropropagation as a New Micropropagation and Transplant Production System, Kozai, T, Afreen, F & Zobayed, S (Eds.), pp. 6190. Dordrecht: Springer.10.1007/1-4020-3126-2_6CrossRefGoogle Scholar
Agarkar, G, Jogee, P, Paralikar, P & Rai, M (2015). Vitex negundo: Bioactivities and Products. Therapeutic Medicinal Plants: From Lab to the Market. Boca Raton: CRC Press.Google Scholar
APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2), 105121. doi:10.1111/j.1095-8339.2009.00996.x.CrossRefGoogle Scholar
Bidabadi, SS & Jain, SM (2020). Cellular, molecular and physiological aspects of in vitro plant regeneration. Plants 9, 702. doi:10.3390/plants9060702.CrossRefGoogle ScholarPubMed
Campilho, A, Nieminen, K & Ragni, L (2020). The development of the periderm: The final frontier between a plant and its environment. Curr Opin Plant Biol 53, 1014. doi:10.1016/j.pbi.2019.08.008.CrossRefGoogle ScholarPubMed
Chandra, S, Bandopadhyay, R, Kumar, V & Chandra, R (2010). Acclimatization of tissue cultured plants: From laboratory to land. Biotechnol Lett 32, 11991205.CrossRefGoogle Scholar
Chirinea, CF, Pasqual, M, Araujo, AG, Pereira, AR & de Castro, EM (2012). Acclimatization and leaf anatomy of micropropagated fig plantlets. Rev Bras Frutic 34, 11801188. doi:10.1590/S0100-29452012000400027.CrossRefGoogle Scholar
da Silva, AB, Lima, PP, de Oliveira, LES & Moreira, AL (2014). In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839) grown in natural ventilation system. Rev Ceres 61, 883890. doi:10.1590/0034-737X201461060001.CrossRefGoogle Scholar
Dewir, YH, Nurmansyah Naidoo, Y & Teixeira da Silva, JA (2018). Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37(11), 14511470. doi:10.1007/s00299-018-2326-1.CrossRefGoogle ScholarPubMed
Franks, PJ, Doheny-Adams, TW, Britton-Harper, ZJ & Gray, JE (2015). Increasing water use efficiency directly through genetic manipulation of stomatal density. New Phytol 207, 188195.10.1111/nph.13347CrossRefGoogle ScholarPubMed
Galmes, J, Ochogavia, JM, Gago, J, Roldan, EJ, Cifre, J & Conesa, MA (2013). Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36, 920935.10.1111/pce.12022CrossRefGoogle ScholarPubMed
George, EF, Hall, MA & Klerk, GJD (2008). The anatomy and morphology of tissue cultured plants. In Plant Propagation by Tissue Culture, George, EF, Hall, MA & Klerk, GJD (Eds.), pp. 465477. Dordrecht: Springer.Google Scholar
Groach, R, Yadav, K & Singh, N (2014). In vitro studies on Vitex negundo, a potent medicinal plant. Environ Exp Biol 12, 149153.Google Scholar
Hazarika, BN (2006). Morpho-physiological disorders in in vitro cultured plants. Sci Hortic 108, 105120.CrossRefGoogle Scholar
Jeffree, CE (2006). The fine structure of the plant cuticle. In Biology of the Plant Cuticle, Riederer, M & Müller, C (Eds.), pp. 11125. Oxford: Blackwell.CrossRefGoogle Scholar
Johansen, DA (1940). Plant Microtechnique. 1st ed. New York, London: McGraw Hill Book Co, pp 182197.Google Scholar
Kannan, M, Rajendran, P, Vedha, V, Ashok, G, Anushka, S, Chandran, P & Nair, R (2012). HIV-1 reverse transcriptase inhibition by Vitex negundo L. leaf extract and quantification of flavonoids in relation to anti-HIV activity. J Cell Mol Biol 10, 5359.Google Scholar
Kulus, D (2020). Influence of growth regulators on the development, quality, and physiological state of in vitro-propagated Lamprocapnos spectabilis (L.) Fukuhara. In Vitro Cell Dev Biol Plant 56, 447457. doi:10.1007/s11627-020-10064-1.CrossRefGoogle Scholar
Lando, AP, Wolfart, MR, Fermino, PCPP & Santos, M (2016). Structural effects on Cattleya xanthina leaves cultivated in vitro and acclimatized ex vitro. Biol Plant 60, 219225.CrossRefGoogle Scholar
Lee, SB & Suh, MC (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34, 557572. doi:10.1007/s00299-015-1772-2.CrossRefGoogle ScholarPubMed
Lodha, D, Patel, AK & Shekhawat, NS (2015). A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): A multipurpose endangered medicinal shrub. Physiol Mol Biol Plants 21, 407415. doi:10.1007/s12298-015-0310-6.CrossRefGoogle ScholarPubMed
Lombardi, SP, Passos, IRS, Nogueira, MCS & Appezzato-da-Gloria, B (2007). In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast. Braz Arch Biol Technol 50, 239247. doi:10.1590/S1516-89132007000200009.CrossRefGoogle Scholar
Manokari, M, Cokulraj, M, Priyadharshini, S, Phulwaria, M & Shekhawat, MS (2020 a). Foliar micro-morphology—A promising tool to improve survival percentage of tissue culture raised plantlets with special reference to in vitro propagation of Vitex negundo L. Vegetos 33, 504515. doi:10.1007/s42535-020-00134-95.Google Scholar
Manokari, M, Latha, R, Priyadharshini, S & Shekhawat, MS (2020 b). Micro-morpho-anatomical mechanisms involve in epiphytic adaptation of micropropagated plants of Vanda tessellata (Roxb.) Hook. ex G. Don. Micros Res Tech. doi:10.1002/jemt.23630.Google Scholar
Martins, JPR, Rodrigues, LCA, Santos, ER, Batista, BG, Gontijo, ABPL & Falqueto, AR (2018). Anatomy and photosystem II activity of in vitro grown Aechmea blanchetiana as affected by 1-naphthaleneacetic acid. Biol Plant 62, 211221. doi:10.1007/s10535-018-0781-8.CrossRefGoogle Scholar
Máthé, Á, Hassan, F & Abdul Kader, A (2015). In vitro micropropagation of medicinal and aromatic plants. Med Arom Plants World 305336. doi:10.1007/978-94-017-9810-5_15.CrossRefGoogle Scholar
Medina, RD, Faloci, MM, Gonzalez, AM & Mroginski, LA (2007). In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs. Ann Bot 99, 409423. doi:10.1093/aob/mcl272.CrossRefGoogle ScholarPubMed
Millenaar, FF, Zanten, M, Cox, MCH, Pierik, R, Voesenek, LACJ & Peeters, AJM (2009). Differential petiole growth in Arabidopsis thaliana: Photocontrol and hormonal regulation. New Phytol 184, 141152. doi:10.1111/j.1469-8137.2009.02921.x.CrossRefGoogle ScholarPubMed
Monja-Mio, KM, Pool, FB, Herrera, G, Martín, EV, Valle, ME & Robert, ML (2015). Development of the stomatal complex and leaf surface of Agave angustifolia haw. “Bacanora” plantlets during the in vitro to ex vitro transition process. Sci Hortic 189, 3240.CrossRefGoogle Scholar
Moyo, M, Aremu, AO & Van Staden, J (2015). Insights into the multifaceted application of microscopic techniques in plant tissue culture systems. Planta 242, 773790.CrossRefGoogle ScholarPubMed
Murashige, T & Skoog, F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15, 473497.CrossRefGoogle Scholar
Perveen, S & Anis, M (2015). Physiological and biochemical parameters influencing ex vitro establishment of the in vitro regenerants of Albizia lebbeck (L.) Benth.: An important soil reclaiming plantation tree. Agrofor Syst 89, 721733.CrossRefGoogle Scholar
Perveen, S, Anis, M & Aref, IM (2013). Lipid peroxidation, H2O2 content, and antioxidants during acclimatization of Abrus precatorius to ex vitro conditions. Biol Plant 57, 417424.CrossRefGoogle Scholar
Radochova, B & Ticha, I (2009). Leaf anatomy during leaf development of photoautotrophically in vitro-grown tobacco plants as affected by growth irradiance. Biol Plant 53, 2127. doi:10.1007/s10535-009-0004-4.CrossRefGoogle Scholar
Rathore, NS, Rathore, N & Shekhawat, NS (2013). In vitro propagation and micromorphological studies of Cleome gynandra: A C4 model plant closely related to Arabidopsis thaliana. Acta Physiol Plant 35, 26912698. doi:10.1007/s11738-013-1301-2.CrossRefGoogle Scholar
Reis, RV, Chierrito, TPC, Silva, TFO, Albiero, ALM, Souza, LA, Goncalves, JE, Oliveira, AJB & Goncalves, RAC (2017). Morpho-anatomical study of Stevia rebaudiana roots grown in vitro and in vivo. Rev Brasil Farmac 27, 3439. doi:10.1016/j.bjp.2016.08.007.CrossRefGoogle Scholar
Revathi, J, Latha, R, Manokari, M & Shekhawat, MS (2019). Foliar micromorphological response of in vitro regenerated and field transferred plants of Oldenlandia umbellata L. A medicinal forest plant. J Forest Environ Sci 35(1), 5460.Google Scholar
Rodrigues, SP, Picoli, EAT, Oliveira, DC, Carneiro, RGS & Isaias, RMS (2014). The effects of in vitro culture on the leaf anatomy of Jatropa curcas L. (Euphobiaceae). Biosci J 30, 19331941.Google Scholar
Saez, PL, Bravo, LA, Saez, KL, Sanchez-Olate, M, Latsague, MI & Rios, DG (2012). Photosynthetic and leaf anatomical characteristics of Castanea sativa: A comparison between in vitro and nursery plants. Biol Plant 56, 1524. doi:10.1007/s10535-012-0010-9.CrossRefGoogle Scholar
Sass, JE (1940). Elements of Botanical Microtechnique. New York and London: McFraw-Hill Book Co. p. 222.Google Scholar
Sathiamoorthy, B, Gupta, P, Kumar, M, Chaturvedi, AA, Shukla, PK & Maurya, R (2007). New antifungal flavonoid glycoside from Vitex negundo. Bioorg Med Chem Lett 17, 239242.CrossRefGoogle ScholarPubMed
Shekhawat, MS & Manokari, M (2016). In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): A multipurpose threatened species. Physiol Mol Biol Plants 22(1), 131142. doi:10.1007/s12298-015-0335-x.CrossRefGoogle ScholarPubMed
Shekhawat, MS & Manokari, M (2018). Micromorphological and anatomical evaluation of in vitro and field transferred plants of Coccinia indica. Agric Res 7(2), 135144. doi:10.1007/s40003-018-0326-6.CrossRefGoogle Scholar
Shekhawat, MS, Manokari, M & Kannan, N (2017). Micromorphological response towards altered environmental conditions in subsequent stages of in vitro propagation of Morinda coreia. Environ Exp Biol 15, 3746. doi:10.22364/eeb.15.06.Google Scholar
Shin, KS, Park, SY & Paek, KY (2013). Sugar metabolism, photosynthesis and growth of in vitro plantlets of Doritaenopsis under controlled microenvironmental conditions. In Vitro Cell Dev Biol Plant 49, 445454. doi:10.1007/s11627-013-9524-x.CrossRefGoogle Scholar
Spicer, R & Groover, A (2010). Evolution of development of vascular cambia and secondary growth. New Phytol 186, 577592. doi:10.1111/j.1469-8137.2010.03236.x.CrossRefGoogle ScholarPubMed
Taiz, L & Zeiger, E (2006). Fisiologia Vegetal. Porto Alegre: Artmed.Google Scholar
Tan, Z, Zhang, Y, Deng, J, Zeng, G & Zhang, Y (2012). Purified vitexin compound 1 suppresses tumor growth and induces cell apoptosis in a mouse model of human choriocarcinoma. Int J Gynecol Cancer 22(3), 360366.CrossRefGoogle Scholar
Tandon, V & Gupta, RK (2005). Effect of Vitex negundo on oxidative stress. Indian J Pharmacol 37, 3840. doi:10.4103/0253-7613.13855.CrossRefGoogle Scholar
Teixeira da Silva, JA, Kher, MM & Nataraj, M (2016). Biotechnological advances in Vitex species, and future perspectives. J Genet Eng Biotechnol 14, 335348.CrossRefGoogle ScholarPubMed
Tikhonov, KG, Khristin, MS, Klimov, VV, Sundireva, MA, Kreslavski, VD, Sidorov, RA, Tsidendambayev, VD & Savchenko, TV (2017). Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russ J Plant Physiol 64, 7382. doi:10.1134/S102144371606011X.CrossRefGoogle Scholar
Usha, PK, Benjamin, S, Mohanan, KV & Raghu, AV (2007). An efficient micropropagation system for Vitex negundo L., an important woody aromatic medicinal plant, through shoot tip culture. Res J Bot 2, 102107. doi:10.3923/rjb.2007.102.107.CrossRefGoogle Scholar
Vieira, CF, Carvalho, FEL, Lima-Melo, Y, Carvalho, CPS, Neto, MCL, Martins, MO & Silveira, JAG (2020). Photosynthetic and redox protection in ex vitro tobacco plantlets acclimatization to increasing light intensity. Biotechnol Res Innov 3, 5972.Google Scholar
Wielgolaski, FE (2001). Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45, 196202. doi:10.1007/s004840100100.CrossRefGoogle ScholarPubMed
Yeats, TH & Rose, JKC (2013). The formation and function of plant cuticles. Plant Physiol 163, 520. doi:10.1104/pp.113.222737.CrossRefGoogle ScholarPubMed
Yokota, S, Karim, MZ, Azad, MAK, Rahman, MM, Eizawa, J, Saito, Y, Yshiguri, F, Iizuka, K, Yahara, S & Yoshizawa, N (2007). Histological observation of changes in leaf structure during successive micropropagation stages in Aralia elata and Phellodendron amurense. Plant Biotechnol 24, 221226.CrossRefGoogle Scholar
Zanten, M, Voesenek, LACJ, Peeters, AJM & Millenaar, FF (2009). Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol 151(3), 14461458. doi:10.1104/pp.109.144386.CrossRefGoogle ScholarPubMed
Zeisler-Diehl, V, Muller, Y & Schreiber, L (2018). Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. J Plant Physiol 227, 6674. doi:10.1016/j.jplph.2018.03.018.CrossRefGoogle Scholar
Zheng, CJ & Qin, LP (2011. Five-leaved chaste tree (Vitex negundo) seeds and antinociceptive effects. In Nuts and Seeds in Health and Disease Prevention, pp. 479486. doi:10.1016/B978-0-12-375688-6.10057-X.CrossRefGoogle Scholar
Zhou, Y, Liu, YE, Cao, J, Zeng, G, Shen, C, Li, Y, Zhou, M, Chen, Y, Pu, W & Potters, L (2009). Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clin Cancer Res 15(16), 51615169.CrossRefGoogle ScholarPubMed
Zobayed, SMA, Afreen, F, Kubota, C & Kozai, T (2000). Water control ability of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Ann Bot 85, 603610.CrossRefGoogle Scholar
Zobayed, SMA, Armstrong, J & Armstrong, W (2001). Leaf anatomy of in vitro tobacco and cauliflower plantlets as affectedby different types of ventilation. Plant Sci 161, 537548.CrossRefGoogle Scholar