Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T04:59:50.224Z Has data issue: false hasContentIssue false

Microstructural Evolution in a CeO2-Gd2O3 System

Published online by Cambridge University Press:  15 December 2011

Fei Ye*
Affiliation:
Key Laboratory of Materials Modification and Key Laboratory for Solar Energy Photovoltaic of Liaoning Province, School of Materials Science and Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
Ding Rong Ou
Affiliation:
Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
Toshiyuki Mori
Affiliation:
Innovation Center of Nanomaterials Science for Environment and Energy, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Microstructural evolution in a CeO2-Gd2O3 system at atomic and nanoscale levels with increasing Gd concentration has been comprehensively investigated by transmission electron microscopy. When the Gd concentration was increased from 10 to 80 at.%, the phase transformation from ceria with fluorite structure to solid solution with C-type structure was not a sudden change but an evolution in the sequence of clusters, domains, and precipitates with C-type structure in the fluorite-structured matrix. Moreover, the ordering of aggregated Gd cations and oxygen vacancies in these microstructural inhomogeneities developed continuously with increasing Gd concentration. This microstructural evolution can be further described based on the development of defect clusters containing Gd cations and oxygen vacancies.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bevan, D.J.M. & Summerville, E. (1979). Mixed rare earth oxides. In Handbook on the Physics and Chemistry of Rare Earths Volume 3, Gschneidner, K.A. Jr. & Eyring, L.R. (Eds.), pp. 401524. Amsterdam: North-Holland Physics Publishing.Google Scholar
Butler, V., Catlow, C.R.A., Fender, B.E.F. & Harding, J.H. (1983). Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8, 109113.CrossRefGoogle Scholar
Catlow, C.R.A. (1981). CRA. Defect clustering in nonstoichiometric oxides. In Nonstoichiometric Oxides, Sørensen, O.T. (Ed.), pp. 6198. New York: Academic Press.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.CrossRefGoogle Scholar
Elliott, S.R. (1990). Physics of Amorphous Materials. London: Longman.Google Scholar
Garvie, L.A.J. & Buseck, P.R. (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 60, 19431947.CrossRefGoogle Scholar
Inaba, H. & Tagawa, H. (1996). Ceria-based solid electrolytes. Solid State Ionics 83, 116.CrossRefGoogle Scholar
Kienle, L. & Simon, A. (2001). Microdomains and diffuse scattering in K2In12Se19. J Solid State Chem 161, 385395.CrossRefGoogle Scholar
Li, J.G., Ikegami, T., Mori, T. & Wada, T. (2001). Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization. Chem Mater 13, 29132920.CrossRefGoogle Scholar
Minervini, L., Zacate, M.O. & Grimes, R.W. (1999). Defect cluster formation in M2O3-doped CeO2. Solid State Ionics 116, 339349.CrossRefGoogle Scholar
Mori, T. & Drennan, J. (2006). Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes. J Electroceram 17, 749757.CrossRefGoogle Scholar
Mori, T., Drennan, J., Lee, J.H., Li, J.G. & Ikegami, T. (2002). Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 154155, 461466.CrossRefGoogle Scholar
Mori, T., Drennan, J., Wang, Y., Auchterlonie, G., Li, J.G. & Yago, A. (2003). Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci Technol Adv Mater 4, 213220.CrossRefGoogle Scholar
Mori, T., Kobayashi, T., Wang, Y., Drennan, J., Nishimura, T., Li, J.G. & Kobayahi, H. (2005). Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering. J Am Ceram Soc 88, 19811984.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Kobayashi, T., Zou, J., Auchterlonie, G. & Drennan, J. (2006a). Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89, 171911-1–3.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Takahashi, M., Zou, J. & Drennan, J. (2006b). Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Mater 54, 37373746.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J., Auchterlonie, G. & Drennan, J. (2007a). Microstructural inhomogeneity in holmium-doped ceria and its influence on the ionic conduction. J Electrochem Soc 154, B616B622.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J., Auchterlonie, G. & Drennan, J. (2007b). Evidence of intragranular segregation of dopant cations in heavily yttrium-doped ceria. Electrochem Solid State Lett 10, P1P3.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J., Auchterlonie, G. & Drennan, J. (2008). Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. Phys Rev B 77, 024108-1–8.CrossRefGoogle Scholar
Rodriguez, J.A., Hanson, J.C., Kim, J.Y., Liu, G., Iglesias-Juez, A. & Fernandez-Garcia, M. (2003). Properties of CeO2 and Ce1-xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional and time-resolved X-ray diffraction studies. J Phys Chem B 107, 35353543.CrossRefGoogle Scholar
Soldatov, A.V., Ivanchenko, T.S., Della Longa, S., Kotani, A., Iwamoto, Y. & Bianconi, A. (1994). Crystal-structure effects in the Ce L3-edge X-ray-absorption spectrum of CeO2: Multiple-scattering resonances and many-body final states. Phys Rev B 50, 50745080.CrossRefGoogle ScholarPubMed
Steele, B.C.H. (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129, 95110.CrossRefGoogle Scholar
Steele, B.C.H. & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature 414, 345352.CrossRefGoogle ScholarPubMed
Travlos, A., Boukos, N., Apostolopoulos, G. & Dimoulas, A. (2003). Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001). Appl Phys Lett 82, 40534055.CrossRefGoogle Scholar
Trovarelli, A. (2002). Catalysis by Ceria and Related Materials. London: Imperial College Press.CrossRefGoogle Scholar
Wallenberg, R., Withers, R., Bevan, D.J.M., Thompson, J.G., Barlow, P. & Hyde, B.G. (1989). The fluorite-related “solid solutions” of CeO2-Y2O3 I: A re-examination by electron microscopy and diffraction. J Less-Common Metals 156, 116.CrossRefGoogle Scholar
Wang, B., Lewis, R.J. & Cormack, A.N. (2011). Computer simulation of large-scale defect clustering and nanodomain structure in gadolinia-doped ceria. Solid State Ionics 59, 20352045.Google Scholar
Wang, D.Y., Park, D.S., Griffith, J. & Nowick, A.S. (1981). Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2, 95105.CrossRefGoogle Scholar
Withers, R., Wallenberg, R., Bevan, D.J.M., Thompson, J.G. & Hyde, B.G. (1989). The fluorite-related “solid solutions” of CeO2-Y2O3 II: A modulated structure approach. J Less-Common Metals 156, 1727.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Cormack, A.N., Lewis, R.J. & Drennan, J. (2008a). Simulation of ordering in large defect clusters in gadolinium-doped ceria. Solid State Ionics 179, 19621967.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Takahashi, M., Zou, J. & Drennan, J. (2007a). Ionic conductivities and microstructures of ytterbium-doped ceria. J Electrochem Soc 154, B180B185.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J., Auchterlonie, G. & Drennan, J. (2007b). Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. J Appl Phys 101, 113528-1–5.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J., Auchterlonie, G. & Drennan, J. (2008b). Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. Solid State Ionics 179, 827831.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J. & Drennan, J. (2007c). Microstructural characterization of terbium-doped ceria. Mater Res Bull 42, 943949.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J. & Drennan, J. (2008c). Microstructural characterization of Ce1−xTbxO2−δ (0.60 ≤ x ≤ 0.90) sintered samples. Mater Res Bull 43, 759764.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J. & Drennan, J. (2009). A structure model of nano-sized domain in Gd-doped ceria. Solid State Ionics 180, 14141420.CrossRefGoogle Scholar