Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T07:33:58.741Z Has data issue: false hasContentIssue false

Microstructural and Chemical Characterization of Ordered Structure in Yttrium Doped Ceria

Published online by Cambridge University Press:  11 January 2013

Pengfei Yan*
Affiliation:
Global Research Center for Environmental and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Toshiyuki Mori
Affiliation:
Global Research Center for Environmental and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Yuanyuan Wu
Affiliation:
Global Research Center for Environmental and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Zhimin Li
Affiliation:
Global Research Center for Environmental and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Graeme John Auchterlonie
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
Jin Zou
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia Materials Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
John Drennan
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The ordered structures in different doping levels (x = 0.1, 0.15, 0.2, 0.25, 0.3) of yttrium doped ceria (YDC, Ce(1−x)YxO2−δ) electrolytes were investigated by electron diffraction, high-resolution transmission electron microscopy (TEM), scanning TEM, and electron energy loss spectroscopy. Oxygen vacancy ordering was experimentally confirmed within the ordered structures. With increasing the doping level, the concentration of trivalent Ce cations was increased in YDC samples and such trivalent Ce cations were supposed to mainly exist in the ordered structures. Based on our electron microscopic observation and microanalysis, a crystal model for the ordered structures is proposed.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balazs, G.B. & Glass, R.S. (1995). Ac-impedance studies of rare-earth-oxide doped ceria. Solid State Ionics 76(1-2), 155162.CrossRefGoogle Scholar
Douillard, L., Gautier, M., Thromat, N., Henriot, M., Guittet, M.J., Duraud, J.P. & Tourillon, G. (1994). Local electronic-structure of Ce-doped Y2O3—An Xps and Xas study. Phys Rev B 49(23), 1617116180.CrossRefGoogle ScholarPubMed
Eguchi, K., Setoguchi, T., Inoue, T. & Arai, H. (1992). Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52(1-3), 165172.CrossRefGoogle Scholar
Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G. & Rosei, R. (2005). Electron localization determines defect formation on ceria substrates. Science 309(5735), 752755.CrossRefGoogle ScholarPubMed
Fortner, J.A. & Buck, E.C. (1996). The chemistry of the light rare-earth elements as determined by electron energy loss spectroscopy. Appl Phys Lett 68(26), 38173819.CrossRefGoogle Scholar
Garvie, L.A.J. & Buseck, P.R. (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 60(12), 19431947.CrossRefGoogle Scholar
Guo, X., Sigle, W. & Maier, J. (2003). Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity. J Am Ceram Soc 86(1), 7787.CrossRefGoogle Scholar
Haile, S.M. (2003). Fuel cell materials and components. Acta Mater 51(19), 59816000.CrossRefGoogle Scholar
Hojo, H., Mizoguchi, T., Ohta, H., Findlay, S.D., Shibata, N., Yamamoto, T. & Ikuhara, Y. (2010). Atomic structure of a CeO2 grain boundary: The role of oxygen vacancies. Nano Lett 10(11), 46684672.CrossRefGoogle ScholarPubMed
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys Rev B 77(10), 104102. CrossRefGoogle Scholar
Inaba, H. & Tagawa, H. (1996). Ceria-based solid electrolytes—Review. Solid State Ionics 83(1-2), 116.CrossRefGoogle Scholar
Jesson, D.E., Pennycook, S.J. & Baribeau, J.M. (1991). Direct imaging of interfacial ordering in ultrathin (SimGen)p superlattices. Phys Rev Lett 66(6), 750753.CrossRefGoogle ScholarPubMed
Jollet, F., Noguera, C., Gautier, M., Thromat, N. & Duraud, J.P. (1991). Influence of oxygen vacancies on the electronic-structure of yttrium-oxide. J Am Ceram Soc 74(2), 358364.CrossRefGoogle Scholar
Jollet, F., Noguera, C., Thromat, N., Gautier, M. & Duraud, J.P. (1990). Electronic-structure of yttrium-oxide. Phys Rev B 42(12), 75877595.CrossRefGoogle ScholarPubMed
Jollet, F., Petit, T., Gota, S., Thromat, N., GautierSoyer, M. & Pasturel, A. (1997). The electronic structure of uranium dioxide: An oxygen K-edge X-ray absorption study. J Phys-Condens Mat 9(43), 93939401.CrossRefGoogle Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101. CrossRefGoogle ScholarPubMed
Li, F., Ohkubo, T., Chen, Y.M., Kodzuka, M., Ye, F., Ou, D.R., Mori, T. & Hono, K. (2010). Laser-assisted three-dimensional atom probe analysis of dopant distribution in Gd-doped CeO2 . Scripta Mater 63(3), 332335.CrossRefGoogle Scholar
Li, J.G., Ikegami, T., Wang, Y.R. & Mori, T. (2002). Nanocrystalline Ce1−xY x O2−x /2 (0 ≦ x ≦ 0.35) oxides via carbonate precipitation: Synthesis and characterization. J Solid State Chem 168(1), 5259.CrossRefGoogle Scholar
Li, Z.P., Mori, T., Ye, F., Ou, D.R., Zou, J. & Drennan, J. (2011a). Dislocation associated incubational domain formation in lightly gadolinium-doped ceria. Microsc Microanal 17(1), 4953.CrossRefGoogle ScholarPubMed
Li, Z.P., Mori, T., Ye, F., Ou, D.R., Zou, J. & Drennan, J. (2011b). Structural phase transformation through defect cluster growth in Gd-doped ceria. Phys Rev B 84(18), 180201(R). CrossRefGoogle Scholar
Mori, T., Buchanan, R., Ou, D.R., Ye, F., Kobayashi, T., Kim, J.D., Zou, J. & Drennan, J. (2008). Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC. J Solid State Electrochem 12(7-8), 841849.CrossRefGoogle Scholar
Mori, T., Drennan, J., Wang, Y., Auchterlonie, G., Li, J.-G. & Yago, A. (2003a). Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci Technol Adv Mat 4(3), 213220.CrossRefGoogle Scholar
Mori, T., Drennan, J., Wang, Y.R., Lee, J.H., Li, J.G. & Ikegami, T. (2003b). Electrolytic properties and nanostructural features in the La2O3-CeO2 system. J Electrochem Soc 150(6), A665A673.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Kobayashi, T., Zou, J., Auchterlonie, G. & Drennan, J. (2006a). Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89(17), 171911. CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Takahashi, M., Zou, J. & Drennan, J. (2006b). Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Mater 54(14), 37373746.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J., Auchterlonie, G. & Drennan, J. (2007). Evidence of intragranular segregation of dopant cations in heavily yttrium-doped ceria. Electrochem Solid State Lett 10(1), P1P3.CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J., Auchterlonie, G. & Drennan, J. (2008a). Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. Phys Rev B 77(2), 024108. CrossRefGoogle Scholar
Ou, D.R., Mori, T., Ye, F., Zou, J. & Drennan, J. (2008b). Comparison between Y-doped ceria and Ho-doped ceria: Electrical conduction and microstructures. Renew Energ 33(2), 197200.CrossRefGoogle Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336(6199), 565567.CrossRefGoogle Scholar
Riess, I., Koerner, R., Ricken, M. & Noelting, J. (1988). Nonstoichiometric phases in cerium oxide. Solid State Ionics 28–30(Part 1), 539541.CrossRefGoogle Scholar
Sanchez-Bautista, C., Dos Santos-Garcia, A.J., Pena-Martinez, J. & Canales-Vazquez, J. (2010). The grain boundary effect on dysprosium doped ceria. Solid State Ionics 181(37-38), 16651673.CrossRefGoogle Scholar
Steele, B.C.H. (2000). Appraisal of Ce1−y Gd y O2−y /2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129(1), 95110.CrossRefGoogle Scholar
Travlos, A., Boukos, N., Apostolopoulos, G. & Dimoulas, A. (2003). Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001). Appl Phys Lett 82(23), 40534055.CrossRefGoogle Scholar
Wang, B., Lewis, R.J. & Cormack, A.N. (2011). Computer simulations of large-scale defect clustering and nanodomain structure in gadolinia-doped ceria. Acta Mater 59(5), 20352045.CrossRefGoogle Scholar
Wang, D.Y., Park, D.S., Griffith, J. & Nowick, A.S. (1981). Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2(2), 95105.CrossRefGoogle Scholar
Wang, R., Crozier, P.A. & Sharma, R. (2009). Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C 113(14), 57005704.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (Eds.) (1996). Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press.CrossRefGoogle Scholar
Withers, R.L., Wallenberg, R., Bevan, D.J.M., Thompson, J.G. & Hyde, B.G. (1989). The fluorite-related solid-solutions of CeO2-Y2O3. 2. A modulated structure approach. J Less-Common Met 156, 1727.CrossRefGoogle Scholar
Wu, Z.Y., Jollet, F., Gota, S., Thromat, N., Gautier-Soyer, M. & Petit, T. (1999). X-ray absorption at the oxygen K edge in cubic f oxides examined using a full multiple-scattering approach. J Phys-Condens Mat 11(37), 71857194.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Takahashi, M., Zou, J. & Drennan, J. (2007). Ionic conductivities and microstructures of ytterbium-doped ceria. J Electrochem Soc 154(2), B180B185.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J., Auchterlonie, G. & Drennan, J. (2008). Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. Solid State Ionics 179(21-26), 827831.CrossRefGoogle Scholar
Ye, F., Mori, T., Ou, D.R., Zou, J. & Drennan, J. (2009). A structure model of nano-sized domain in Gd-doped ceria. Solid State Ionics 180(26-27), 14141420.CrossRefGoogle Scholar
Ye, F., Ou, D.R. & Mori, T. (2012). Microstructural evolution in a CeO2-Gd2O3 system. Microsc Microanal 18(1), 162170.CrossRefGoogle Scholar