Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T21:35:01.810Z Has data issue: false hasContentIssue false

Microscopy and Histochemistry of Leaves and Stems of Baccharis Subgenus Coridifoliae (Asteraceae) Through LM and SEM-EDS

Published online by Cambridge University Press:  27 August 2021

Valter Paes de Almeida*
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa (UEPG), Campus Uvaranas – Avenida General Carlos Cavalcanti, 4748 - Uvaranas, 84030-900, Ponta Grossa, Paraná, Brazil
Gustavo Heiden
Affiliation:
Embrapa Clima Temperado, Rodovia BR 392, km 78, Caixa Postal 403, 96010-971, Pelotas, Rio Grande do Sul, Brazil
Vijayasankar Raman
Affiliation:
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, 1558 University Circle, P.O. Box 1848, University, MS 38677, USA
Andressa Novatski
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa (UEPG), Campus Uvaranas – Avenida General Carlos Cavalcanti, 4748 - Uvaranas, 84030-900, Ponta Grossa, Paraná, Brazil
Julia Emilia Bussade
Affiliation:
Department of Modern Languages, University of Mississippi, University, MS 38677, USA
Paulo Vitor Farago
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa (UEPG), Campus Uvaranas – Avenida General Carlos Cavalcanti, 4748 - Uvaranas, 84030-900, Ponta Grossa, Paraná, Brazil
Jane Manfron
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa (UEPG), Campus Uvaranas – Avenida General Carlos Cavalcanti, 4748 - Uvaranas, 84030-900, Ponta Grossa, Paraná, Brazil
*
*Corresponding author: Valter Paes de Almeida, E-mail: [email protected]
Get access

Abstract

This research reports for the first time the anatomical characteristics of all species belonging to Baccharis subgenus Coridifoliae (Asteraceae). The anatomy and micro-morphology of aerial vegetative organs of ten species: B. albilanosa, B. artemisioides, B. bicolor, B. coridifolia, B. erigeroides, B. napaea, B. ochracea, B. pluricapitulata, B. scabrifolia, and B. suberectifolia are investigated by light and scanning electron microscopy. The number of secretory ducts, crystal morphology, presence or absence of conical nonglandular trichomes, leaves cross-section shape, margin morphology, anticlinal epidermal cell walls shape, and cuticle structure were identified as characters with diagnostic value for species. Similarity cluster analysis allows the formation of three groups based on a percentage of similarity between 45 and 84%. Some species showed differential characteristics as the presence of up to four secretory ducts in the midrib in B. albilanosa; smooth cuticles onboth sides of the leaf epidermis in B. erigeroides; flat midrib shape on both sides of the leaves in B. napaea; and convex–flat midrib shape in B. suberectifolia. The remaining species can be differentiated by a set of anatomical features. Anatomical and histochemical characteristics of stems and leaves provided data to support species identification.

Type
Micrographia
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, VP, Hirt, AA, Raeski, PA, Mika, BE, Justus, B, Santos, VLP, Franco, CRC, Paula, JP, Farago, PV & Budel, JM (2017). Comparative morphoanatomical analysis of Mikania species. Rev Bras Farmacogn 27, 919.CrossRefGoogle Scholar
Almeida, VP, Raman, V, Raeski, PA, Urban, AM, Swiech, JN, Miguel, MD, Farago, PV, Khan, IA & Budel, JM (2020). Anatomy, micromorphology, and histochemistry of leaves and stems of Cantinoa althaeifolia (Lamiaceae). Microsc Res Tech 83, 551557.CrossRefGoogle Scholar
Barreto, IF, Paula, JP, Farago, PV, Duarte, MR & Budel, JM (2015). Pharmacobotanical study of the leaves and stems of Baccharis ochracea Spreng. for quality control. Lat Am J Pharm 34, 14971502.Google Scholar
Berlyn, GP & Miksche, JP (1976). Botanical Microtechnique and Cytochemistry. Ames, USA: Iowa State University.CrossRefGoogle Scholar
BFG - The Brazil Flora Group (2015). Growing knowledge: An overview of seed plant diversity in Brazil. Rodriguésia 66, 10851113.CrossRefGoogle Scholar
Bobek, VB, Almeida, VP, Pereira, CB, Heiden, G, Duarte, MR, Budel, JM & Nakashima, T (2015). Comparative pharmacobotanical analysis of Baccharis caprariifolia DC. and B. erioclada DC. From Campos Gerais, Paraná, Southern Brazil. Lat Am J Pharm 34, 13961402.Google Scholar
Bobek, VB, Heiden, G, Oliveira, CF, Almeida, VP, Paula, JP, Farago, PV, Nakashima, T & Budel, JM (2016). Comparative analytical micrographs of “vassouras” (Baccharis, Asteraceae). Rev Bras Farmacogn 26, 665672.CrossRefGoogle Scholar
Budel, JM & Duarte, MR (2007). Caracteres morfoanatômicos de partes vegetativas aéreas de Baccharis coridifolia DC. (Asteraceae-Astereae). Lat Am J Pharm 26, 723731.Google Scholar
Budel, JM & Duarte, MR (2008). Estudo farmacobotânico de folha e caule de Baccharis uncinella DC., Asteraceae. Lat Am J Pharm 27, 740746.Google Scholar
Budel, JM & Duarte, MR (2010). Macro and microscopic characters of the aerial vegetative organs of Carqueja: Baccharis usterii heering. Braz Arch Biol Technol 53, 123131.CrossRefGoogle Scholar
Budel, JM, Duarte, MR, Döll-Boscardin, PM, Farago, PV, Matzenbacher, NI, Sartoratto, A & Maia, BHLNS (2012). Composition of essential oils and secretory structures of Baccharis anomala, B. megapotamica and B. ochracea. J Essent Oil Res 24, 1924.CrossRefGoogle Scholar
Budel, JM, Raman, V, Monteiro, LM, Almeida, VP, Bobek, VB, Heiden, G, Takeda, IJM & Khan, IA (2018 a). Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae). Microsc Res Tech 81, 832842.CrossRefGoogle Scholar
Budel, JM, Wang, M, Raman, V, Zhao, J, Khan, SI, Rehman, JU, Techen, N, Tekwani, B, Monteiro, LM, Heiden, G, Takeda, IJM, Farago, PV & Khan, IA (2018 b). Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 2620.CrossRefGoogle ScholarPubMed
Campos, FR, Bressan, J, Jasinski, VCG, Zuccolotto, T, Silva, LE & Cerqueira, LB (2016). Baccharis (Asteraceae): Chemical constituents and biological activities. Chem Biodivers 13, 117.CrossRefGoogle Scholar
D'Almeida, W, Monteiro, LM, Raman, V, Rehman, JU, Paludo, KS, Maia, BHLNS, Casapula, I, Khan, IA, Farago, PV & Budel, JM (2021). Microscopy of Eugenia involucrata, chemical composition and biological activities of the volatile oil. Rev Bras Farmac 31, 239243.CrossRefGoogle Scholar
Del Corral, S, Diaz-Napal, GN, Zaragoza, M, Carpinella, MC, Ruiz, G & Palacios, SM (2014). Screening for extracts with insect antifeedant properties in native plants from central Argentina. Bol Latinoam Caribe Plantas Med Aromát 13, 498505.Google Scholar
Dickison, WC (2000). Integrative Plant Anatomy. California, USA: Academic Press.Google Scholar
Foster, AS (1949). Practical Plant Anatomy. Princeton, USA: D. Van Nostrand.Google Scholar
Franceschi, VR & Nakata, PA (2005). Calcium oxalate in plants: Formation and function. Annu Rev Plant Biol 56, 4171.CrossRefGoogle ScholarPubMed
Freire, SE, Urtubey, E & Giuliano, DA (2007). Epidermal characters of Baccharis (Asteraceae) species used in traditional medicine. Caldasia 29, 2338.Google Scholar
Fuchs, CH (1963). Fuchsin staining with NaOH clearing for lignified elements of whole plants or plants organs. Stain Technol 38, 141144.CrossRefGoogle Scholar
Gabe, M (1968). Techniques Histologiques. Paris, France: Masson et Cie.Google Scholar
García, CC, Rosso, ML, Bertoni, MD, Maier, MS & Damonte, EB (2002). Evaluation of the antiviral activity against Junin virus of macrocyclic trichothecenes produced by the hypocrealean epibiont of Baccharis coridifolia. Planta Med 68, 209212.CrossRefGoogle ScholarPubMed
Giuliano, DA & Freire, SE (2011). Nuevas secciones en Baccharis (Asteraceae, Astereae) de América del Sur. Ann Missouri Bot Gard 98, 331347.CrossRefGoogle Scholar
González, ML, Joray, MB, Laiolo, J, Crespo, MI, Palacios, SM, Ruiz, GM & Carpinella, MC (2018). Cytotoxic activity of extracts from plants of central Argentina on sensitive and multidrug-resistant leukemia cells: Isolation of an active principle from Gaillardia megapotamica. Evid-Based Compl Alt Med 9185935, 113.Google Scholar
Heiden, G (2020). Baccharis in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em http://reflora.jbrj.gov.br/reflora/floradobrasil/FB5151 (acesso june 2, 2021).Google Scholar
Heiden, G, Antonelli, A & Pirani, JR (2019). A novel phylogenetic infrageneric classification of Baccharis (Asteraceae: Astereae), a highly diversified American genus. Taxon 68, 10481081.CrossRefGoogle Scholar
Heiden, G & Pirani, JR (2016). Novelties towards a phylogenetic infrageneric classification of Baccharis (Asteraceae, Astereae). Phytotaxa 289, 285290.CrossRefGoogle Scholar
Johansen, DA (1940). Plant Microtechnique. New York, USA: McGraw Hill Book.Google Scholar
Karabourniotis, G, Horner, HT, Bresta, P, Nikolopoulos, D & Liakopoulos, G (2020). New insights into the functions of carbon–calcium inclusions in plants. New Phytol 228, 845854.CrossRefGoogle ScholarPubMed
Konyar, ST, Öztürk, N & Dane, F (2014). Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants. Bot Stud 55, 19.Google Scholar
Kumar, GV, Kulkarni, NM & Raju, S (2016). Extraction of Baccharis coridifolia plant parts and its evaluation for antioxidant activity. Indo Am J Pharm Sci 3, 15591564.Google Scholar
Lersten, NR, Czlapinski, AR, Curtis, JD, Freckmann, R & Horner, HT (2006). Oil bodies in leaf mesophyll cells of angiosperms: Overview and a selected survey. Am J Bot 93, 17311739.CrossRefGoogle Scholar
Lersten, NR & Horner, HT (2011). Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot 98, 111.CrossRefGoogle Scholar
Minteguiaga, M, Mercado, MI, Ponessa, GI, Catalán, CAN & Dellacassa, E (2018). Morphoanatomy and essential oil analysis of Baccharis trimera (Less.) DC. (Asteraceae) from Uruguay. Ind Crop Prod 112, 488498.CrossRefGoogle Scholar
Mongelli, E, Desmarchelier, C, Talou, JR, Coussio, J & Ciccia, G (1997). In vitro antioxidant and cytotoxic activity of extracts of Baccharis coridifolia DC. J Ethnopharmacol 58, 157163.CrossRefGoogle ScholarPubMed
Monks, NR, Ferraz, A, Bordignon, S, Machado, KR, Lima, MFS, Rocha, AB & Schwartsmann, G (2002). In vitro cytotoxicity of extracts from Brazilian Asteraceae. Pharm Biol 40, 494500.CrossRefGoogle Scholar
Onofre, SB, Canton, M & Pires, PA (2013). Action of essential oil obtained from Baccharis coridifolia D.C. (Asteraceae-Astereae) on the activity of antibiotics. Adv Microbiol 3, 166170.CrossRefGoogle Scholar
Ornellas, T, Heiden, G, Luna, BN & Barros, CF (2019). Comparative leaf anatomy of Baccharis (Asteraceae) from high-altitude grasslands in Brazil: Taxonomic and ecological implications. Botany 97, 615626.CrossRefGoogle Scholar
Parveen, A, Adams, JS, Raman, V, Budel, JM, Zhao, J, Babu, GNM & Khan, IA (2020). Comparative morpho-anatomical and HPTLC profiling of Tinospora species and dietary supplements. Planta Med 86, 470481.Google ScholarPubMed
Pauzer, MS, Borsato, TO, Almeida, VP, Raman, V, Justus, B, Pereira, CB, Flores, TB, Maia, BHNS, Meneguetti, E, Kanunfre, CC, Paula, JFP, Farago, PV & Budel, JM (2021). Eucalyptus cinerea: Microscopic profile, chemical composition of essential oil and its antioxidant, microbiological and cytotoxic activities. Braz Arc Biol Technol 64, e21200772.CrossRefGoogle Scholar
Pereira, CB, Farago, PV, Budel, JM, Paula, JP, Folquitto, DG, Miguel, OG & Miguel, MD (2014). A new contribution to the pharmacognostic study of carquejas: Baccharis milleflora DC., Asteraceae. Lat Am J Pharm 33, 841847.Google Scholar
Pereira, CB, Kanunfre, CC, Farago, PV, Borsato, DM, Budel, JM, Maia, BHLNS, Campesatto, EA, Sartoratto, A, Miguel, MD & Miguel, OG (2017). Cytotoxic mechanism of Baccharis milleflora (Less.) DC. essential oil. Toxicol In Vitro 42, 214221.CrossRefGoogle ScholarPubMed
Roeser, KR (1972). Die nadel der schwarzkiefer-massenprodukt und kunstwerk der natur. Mikrokosmos 61, 3336.Google Scholar
Shimada, TL, Takano, Y, Shimada, T, Fujiwara, M, Fukao, Y, Mori, M, Okazaki, Y, Saito, K, Sasaki, R, Aoki, K & Hara-Nishimura, I (2014). Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis thaliana. Plant Physiol 164, 105118.CrossRefGoogle Scholar
Simões, CMO, Falkenberg, M, Mentz, LA, Schenkel, EP, Amoros, M & Girre, L (1999). Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine 6, 205214.CrossRefGoogle ScholarPubMed
Souza, CA, Farago, PV, Duarte, MR & Budel, JM (2011). Pharmacobotanical study of Baccharis singularis (Vell.) G.M. Barroso, Asteraceae. Lat Am J Pharm 30, 311317.Google Scholar
Thiers, B (2020). [continuously updated] Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Available at http://sweetgum.nybg.org/science/ih/ (retrieved April 4, 2020).Google Scholar
Tolouei, SEL, Palozi, RAC, Tirloni, CAS, Marques, AAM, Schaedler, MI, Guarnier, LP, Silva, AO, Almeida, VP, Budel, JM, Souza, RIC, Santos, AC, Silva, DB, Lourenço, ELB, Dalsenter, PR & Gasparotto Junior, A (2019). Ethnopharmacological approaches to Talinum paniculatum (Jacq.) gaertn. – exploring cardiorenal effects from the Brazilian cerrado. J Ethnopharmacol 238, 111873.CrossRefGoogle ScholarPubMed
Tozin, LRS & Rodrigues, TM (2017). Morphology and histochemistry of glandular trichomes in Hyptis villosa Pohl ex Benth. (Lamiaceae) and differential labeling of cytoskeletal elements. Acta Bot Bras 31, 330343.CrossRefGoogle Scholar
Ventrella, MC, Almeida, AL, Nery, L & Coelho, VPM (2013). Métodos Histoquímicos Aplicados às Sementes. Viçosa, BR, UFV.Google Scholar
Wosch, L, Imig, DC, Cervi, AC, Moura, BB, Budel, JM & Santos, CAM (2015). Comparative study of Passiflora taxa leaves: I. A morpho-anatomic profile. Rev Bras Farmacogn 25, 328343.CrossRefGoogle Scholar
Zuccolotto, T, Bressan, J, Lourenço, AVF, Bruginski, E, Veiga, A, Marinho, JVN, Raeski, PA, Heiden, G, Salvador, MJ, Murakami, FS, Budel, JM & Campos, FR (2019). Chemical, antioxidant, and antimicrobial evaluation of essential oils and an anatomical study of the aerial parts from Baccharis species (Asteraceae). Chem Biodivers 16, e1800547.CrossRefGoogle Scholar