Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T20:51:52.908Z Has data issue: false hasContentIssue false

Microscopy Analysis of Pyramid Formation Evolution with Ultra-Low Concentrated Na2CO3/NaHCO3 Solution on (100) Si for Solar Cell Application

Published online by Cambridge University Press:  13 February 2013

Amada Montesdeoca-Santana
Affiliation:
Departamento de Física Básica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain Fraunhofer Institute for Solar Energy Systems, Laboratory- and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen, Germany
Alejandro González Orive
Affiliation:
Departamento de Química Física, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, 38205 La Laguna, Tenerife, Spain
Alberto Hernández Creus
Affiliation:
Departamento de Química Física, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, 38205 La Laguna, Tenerife, Spain
Benjamín González-Díaz
Affiliation:
Departamento de Física Básica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
Dietmar Borchert
Affiliation:
Fraunhofer Institute for Solar Energy Systems, Laboratory- and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen, Germany
Ricardo Guerrero-Lemus*
Affiliation:
Departamento de Física Básica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, 38206 La Laguna, Tenerife, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

An analysis of the nucleation mechanism of pyramids formed in (100) silicon in Na2CO3/NaHCO3 solution has been carried out. This texturization process of silicon by means of Na2CO3/NaHCO3 solutions is of special interest because it can be applied to the silicon solar cell industry to texture solar cell surfaces to decrease the front reflection and enhance light trapping in the cells. For this purpose, two microscopy techniques—scanning electron microscopy and atomic force microscopy—have been used to study the different stages of pyramidal nucleation and formation. The different aspects and factors involved in the texturization process require different analysis conditions and microscopy resolution. Tracing the transformation of determined surface areas and structures has been achieved, contributing clarification of the mechanism of pyramid nucleation in Na2CO3/NaHCO3 solutions.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allongue, P., Costa-Kieling, V. & Gerischer, H. (1993). Etching of silicon in NaOH solutions. II. Electrochemical studies of n-Si (111) and (100) and mechanism of the dissolution. J Electrochem Soc 140, 10181026.Google Scholar
Bean, K.E. (1978). Anisotropic etching of silicon. IEEE Trans Electron Devices 25, 11851193.Google Scholar
Bhatnagar, Y.K. & Nathan, A. (1993). On pyramidal protrusions in anisotropic etching of ⟨100⟩ silicon. Sens Actuators A 36, 233240.Google Scholar
Edwards, M., Bowden, S., Das, U. & Burrows, M. (2008). Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells 92, 13731377.Google Scholar
Elwenspoek, M. (1993). On the mechanism of anisotropic etching of silicon. J Electrochem Soc 140, 20752080.Google Scholar
Gosálvez, M.A., Nieminen, R.M., Kilpinen, P., Haimi, E. & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: Atomistic Monte-Carlo simulations and experiments. Appl Surf Sci 178, 726.Google Scholar
Marrero, N., González-Díaz, B., Guerrero-Lemus, R., Borchert, D. & Hernández-Rodríguez, C. (2007). Optimization of sodium carbonate texturization on large-area crystalline silicon solar cells. Sol Energy Mater Sol Cells 91, 19431947.CrossRefGoogle Scholar
Montesdeoca-Santana, A., Jiménez-Rodríguez, E., González-Díaz, B., Borchert, D. & Guerrero-Lemus, R. (2012). Ultra-low concentration Na2CO3/NaHCO3 solution for texturization of crystalline silicon solar cells. Prog Photovolt Res Appl 20, 191196.CrossRefGoogle Scholar
Nishimoto, Y. & Namba, K. (2000). Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions. Sol Energy Mater Sol Cells 61, 393402.Google Scholar
Palik, E.D., Bermudez, V.M. & Glembocki, O.J. (1985). Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH. J Electrochem Soc 132, 871884.Google Scholar
Palik, E.D., Glembocki, O.J., Heard, I., Burno, P.S. & Tenerz, L. (1991). Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys 70, 32913300.Google Scholar
Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Berney Needleman, D. & Buonassisi, T. (2012). Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ Sci 5, 58745883.Google Scholar
Rola, K.P. & Zubel, I. (2011). Investigation of Si (h k l) surfaces etched in KOH solutions saturated with tertiary-butyl alcohol. J Micromech Microeng 21, 115026. CrossRefGoogle Scholar
Schnakenberg, U., Benecke, W. & Lange, P. (1991). TMAHW etchants for silicon micromachining. In Proceedings of the 6th International Conference on Solid-State Sensors and Actuators, Tech. Dig. Transducers 91, pp. 815818, San Francisco. Google Scholar
Schröder, H., Obermeier, E. & Steckenborn, A. (1999). Micropyramidal hillocks on KOH etched {100} silicon surfaces: Formation, prevention and removal. J Micromech Microeng 9, 139145.CrossRefGoogle Scholar
Seidel, H., Csepregi, L., Heuberger, A. & Baumgärtel, H. (1990). Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137, 36123626.Google Scholar
Sparber, W., Schultz, O., Biro, D., Emanuel, G., Preu, R., Poddey, A. & Borchert, D. (2003). Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3 . In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 13721375, Osaka. Google Scholar
Tan, S., Han, H., Boudreau, R. & Reed, M.L. (1994). Process induced hillock defects on anisotropically etched silicon. In Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems, pp. 229234. Oiso: IEEE.Google Scholar
Van Veenendaal, E., Sato, K., Shikida, M., Nijdam, A.J. & Van Suchtelen, J. (2001). Micro-morphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH: velocity source forests. Sens Actuators A 93, 232242.Google Scholar