No CrossRef data available.
Article contents
Microphotometry of Underwater Shadowing by a Moss from a Niagara Escarpment Waterfall
Published online by Cambridge University Press: 19 November 2010
Abstract
Microscope and fiber-optic spectrophotometry of transmittance and backscattering both showed moss leaves to be capable of casting strong shadows, with a single leaf blocking approximately 90% of incident light from a point source. In leaves with only one layer of cells, the transmittance through the cytoplasm of single cells was similar to that for whole leaves. Analysis of cell wall birefringence by polarized-light interferometry indicated that cell walls might normally scatter rather than transmit light. Spectra transmitted through, or backscattered from, the upper green layers of moss were dominated by selective absorbance from chlorophyll, but there was also evidence of wavelength-dependent scattering, as detected in the lower layers of brown, dead moss. Specular reflectance from moss leaves was detected by polarimetry and may have contributed to the relatively high macroscopic transmittance of stationary moss in water. Shadowing by moss leaves was confirmed by dynamic measurements of mosses in turbulent water without bubbles. Flicker patterns from leaves were superimposed on the underwater flicker pattern created at the air-water interface, thus flecks of light were reduced in intensity, increased in frequency, and decreased in duration. This was detected with both point source and diffuse illumination of samples.
Keywords
- Type
- Biological Applications
- Information
- Copyright
- Copyright © Microscopy Society of America 2011