Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:05:11.244Z Has data issue: false hasContentIssue false

Mice Spermatogonial Stem Cells Transplantation Induces Macrophage Migration into the Seminiferous Epithelium and Lipid Body Formation: High-Resolution Light Microscopy and Ultrastructural Studies

Published online by Cambridge University Press:  03 November 2011

Felipe F. Dias
Affiliation:
Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil Laboratory of Structural Biology and Reproduction, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Hélio Chiarini-Garcia
Affiliation:
Laboratory of Structural Biology and Reproduction, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Gleydes G. Parreira
Affiliation:
Laboratory of Structural Biology and Reproduction, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Rossana C.N. Melo*
Affiliation:
Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Transplantation of spermatogonial stem cells (SSCs), the male germline stem cells, in experimental animal models has been successfully used to study mechanisms involved in SSC self-renewal and to restore fertility. However, there are still many challenges associated with understanding the recipient immune response for SSCs use in clinical therapies. Here, we have undertaken a detailed structural study of macrophages elicited by SSCs transplantation in mice using both high-resolution light microscopy (HRLM) and transmission electron microscopy (TEM). We demonstrate that SSCs transplantation elicits a rapid and potent recruitment of macrophages into the seminiferous epithelium (SE). Infiltrating macrophages were derived from differentiation of peritubular monocyte-like cells into typical activated macrophages, which actively migrate through the SE, accumulate in the tubule lumen, and direct phagocytosis of differentiating germ cells and spermatozoa. Quantitative TEM analyses revealed increased formation of lipid bodies (LBs), organelles recognized as intracellular platforms for synthesis of inflammatory mediators and key markers of macrophage activation, within both infiltrating macrophages and Sertoli cells. LBs significantly increased in number and size in parallel to the augmented macrophage migration during different times post-transplantation. Our findings suggest that LBs may be involved with immunomodulatory mechanisms regulating the seminiferous tubule niche after SSC transplantation.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Accioly, M.T., Pacheco, P., Maya-Monteiro, C.M., Carrossini, N., Robbs, B.K., Oliveira, S.S., Kaufmann, C., Morgado-Diaz, J.A., Bozza, P.T. & Viola, J.P. (2008). Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68(6), 17321740.CrossRefGoogle ScholarPubMed
Aponte, P.M., van Bragt, M.P., de Rooij, D.G. & van Pelt, A.M. (2005). Spermatogonial stem cells: Characteristics and experimental possibilities. APMIS 113(11-12), 727742.CrossRefGoogle ScholarPubMed
Bellvé, A.R. (1993). Purification, culture and fractionation of spermatogenesis in cells. In Methods in Enzymology, Wassarman, P.M. & de Pamphilis, M.L. (Eds.), pp. 84113. New York: Academic Press.Google Scholar
Biswas, N.M., Sanyal, S. & Patra, P.B. (1978). Antispermatogenic effect of aspirin and its prevention by prostaglandin E2. Andrologia 10(2), 137141.CrossRefGoogle ScholarPubMed
Bozza, P.T., Melo, R.C. & Bandeira-Melo, C. (2007). Leukocyte lipid bodies regulation and function: Contribution to allergy and host defense. Pharmacol Ther 113(1), 3049.CrossRefGoogle ScholarPubMed
Bozza, P.T., Payne, J.L., Goulet, J.L. & Weller, P.F. (1996). Mechanisms of platelet-activating factor-induced lipid body formation: Requisite roles for 5-lipoxygenase and de novo protein synthesis in the compartmentalization of neutrophil lipids. J Ex Med 183(4), 15151525.CrossRefGoogle ScholarPubMed
Brinster, R.L. (2007). Male germline stem cells: From mice to men. Science 316(5823), 404405.CrossRefGoogle Scholar
Brinster, R.L. & Zimmermann, J.W. (1994). Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91(24), 1129811302.CrossRefGoogle ScholarPubMed
Cardona, P.J., Llatjos, R., Gordillo, S., Diaz, J., Ojanguren, I., Ariza, A. & Ausina, V. (2000). Evolution of granulomas in lungs of mice infected aerogenically with Mycobacterium tuberculosis. Scand J Immunol 52(2), 156163.CrossRefGoogle ScholarPubMed
Chiarini-Garcia, H. & Meistrich, M.L. (2008). High-resolution light microscopic characterization of spermatogonia. Methods Mol Biol 450, 95107.CrossRefGoogle ScholarPubMed
Chiarini-Garcia, H. & Russell, L.D. (2001). High-resolution light microscopic characterization of mouse spermatogonia. Biol Reprod 65(4), 11701178.CrossRefGoogle ScholarPubMed
Chiarini-Garcia, H. & Russell, L.D. (2002). Characterization of mouse spermatogonia by transmission electron microscopy. Reproduction 123(4), 567577.CrossRefGoogle ScholarPubMed
Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. & Valdivia, R.H. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105(27), 93799384.CrossRefGoogle ScholarPubMed
Cohen, P.E., Nishimura, K., Zhu, L. & Pollard, J.W. (1999). Macrophages: Important accessory cells for reproductive function. J Leukoc Biol 66(5), 765772.CrossRefGoogle ScholarPubMed
D'Angelo, A.R., Sacchini, F., Di Febo, T., Langella, V., Di Provvido, A., Di Francesco, G., Lelli, R. & Pini, A. (2010). Effects of immune serum on macrophage cell cultures infected with Mycoplasma mycoides subsp. mycoides small colony: Morphological analysis by scanning electron microscopy. Vet Ital 46(4), 389404.Google ScholarPubMed
D'Avila, H., Melo, R.C.N., Parreira, G.G., Werneck-Barroso, E., Castro-Faria-Neto, H.C. & Bozza, P.T. (2006). Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: Intracellular domains for eicosanoid synthesis in vivo. J Immunol 176(5), 30873097.CrossRefGoogle ScholarPubMed
D'Avila, H., Roque, N.R., Cardoso, R.M., Castro-Faria-Neto, H.C., Melo, R.C.N. & Bozza, P.T. (2008). Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages. Cell Microbiol 10(12), 25892604.CrossRefGoogle Scholar
Dobrinski, I. (2006). Advances and applications of germ cell transplantation. Hum Fertil (Camb) 9(1), 914.CrossRefGoogle Scholar
Durand, E.M. & Zon, L.I. (2010). Newly emerging roles for prostaglandin E2 regulation of hematopoiesis and hematopoietic stem cell engraftment. Curr Opin Hematol 17(4), 308312.CrossRefGoogle ScholarPubMed
Dvorak, A.M., Dvorak, H.F., Peters, S.P., Shulman, E.S., MacGlashan, D.W. Jr., Pyne, K., Harvey, V.S., Galli, S.J. & Lichtenstein, L.M. (1983). Lipid bodies: Cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol 131(6), 29652976.CrossRefGoogle ScholarPubMed
Dvorak, A.M., Morgan, E., Schleimer, R.P., Ryeom, S.W., Lichtenstein, L.M. & Weller, P.F. (1992). Ultrastructural immunogold localization of prostaglandin endoperoxide synthase (cyclooxygenase) to non-membrane-bound cytoplasmic lipid bodies in human lung mast cells, alveolar macrophages, type II pneumocytes, and neutrophils. J Histochem Cytochem 40(6), 759769.CrossRefGoogle ScholarPubMed
Fadok, V.A., Bratton, D.L., Konowal, A., Freed, P.W., Westcott, J.Y. & Henson, P.M. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4), 890898.CrossRefGoogle ScholarPubMed
Frisch, B.J., Porter, R.L., Gigliotti, B.J., Olm-Shipman, A.J., Weber, J.M., O'Keefe, R.J., Jordan, C.T. & Calvi, L.M. (2009). In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 114(19), 40544063.CrossRefGoogle ScholarPubMed
Frungieri, M.B., Calandra, R.S., Lustig, L., Meineke, V., Kohn, F.M., Vogt, H.J. & Mayerhofer, A. (2002). Number, distribution pattern, and identification of macrophages in the testes of infertile men. Fertil Steril 78(2), 298306.CrossRefGoogle ScholarPubMed
Gaytan, F., Bellido, C., Aguilar, E. & van Rooijen, N. (1994). Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102(2), 393399.CrossRefGoogle ScholarPubMed
Goessling, W., North, T.E., Loewer, S., Lord, A.M., Lee, S., Stoick-Cooper, C.L., Weidinger, G., Puder, M., Daley, G.Q., Moon, R.T. & Zon, L.I. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6), 11361147.CrossRefGoogle Scholar
Grisanti, L., Falciatori, I., Grasso, M., Dovere, L., Fera, S., Muciaccia, B., Fuso, A., Berno, V., Boitani, C., Stefanini, M. & Vicini, E. (2009). Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27(12), 30433052.CrossRefGoogle ScholarPubMed
Hedger, M.P. (2002). Macrophages and the immune responsiveness of the testis. J Reprod Immunol 57(1-2), 1934.CrossRefGoogle ScholarPubMed
Hermo, L. & Clermont, Y. (1976). Light cells within the limiting membrane of rat seminiferous tubules. Am J Anat 145(4), 467483.CrossRefGoogle ScholarPubMed
Herrler, T., Leicht, S.F., Huber, S., Hermann, P.C., Schwarz, T.M., Kopp, R. & Heeschen, C. (2009). Prostaglandin E positively modulates endothelial progenitor cell homeostasis: An advanced treatment modality for autologous cell therapy. J Vasc Res 46(4), 333346.CrossRefGoogle ScholarPubMed
Hoggatt, J. & Pelus, L.M. (2010). Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 24(12), 19932002.CrossRefGoogle ScholarPubMed
Hoggatt, J., Singh, P., Sampath, J. & Pelus, L.M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113(22), 54445455.CrossRefGoogle ScholarPubMed
Hojo, H., Aoyama, H., Tanaka, S. & Teramoto, S. (1995). Ultrastructural and morphometrical analyses of Leydig and Sertoli cells in the testes of rats with hereditary polydactylism. J Reprod Fertil 104(2), 331335.CrossRefGoogle ScholarPubMed
Hojo, H., Kaneda, M. & Teramoto, S. (1997). Appearance of morphologically abnormal Sertoli cells in infertile PD male rats during postnatal development. Lab Anim Sci 47(5), 524527.Google ScholarPubMed
Hutson, J.C. (2006). Physiologic interactions between macrophages and Leydig cells. Ex Biol Med (Maywood) 231(1), 17.CrossRefGoogle ScholarPubMed
Kern, S. & Maddocks, S. (1995). Indomethacin blocks the immunosuppressive activity of rat testicular macrophages cultured in vitro. J Reprod Immunol 28(3), 189201.CrossRefGoogle ScholarPubMed
Kubota, H. & Brinster, R.L. (2006). Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab 2(2), 99108.CrossRefGoogle ScholarPubMed
Mattos, K.A., D'Avila, H., Rodrigues, L.S., Oliveira, V.G., Sarno, E.N., Atella, G.C., Pereira, G.M., Bozza, P.T. & Pessolani, M.C. (2010). Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 87(3), 371384.CrossRefGoogle ScholarPubMed
Mattos, K.A., Lara, F.A., Oliveira, V.G., Rodrigues, L.S., D'Avila, H., Melo, R.C.N., Manso, P.P., Sarno, E.N., Bozza, P.T. & Pessolani, M.C. (2011). Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: A putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13(2), 259273.CrossRefGoogle ScholarPubMed
Mauduit, C., Hamamah, S. & Benahmed, M. (1999). Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5(5), 535545.CrossRefGoogle ScholarPubMed
Melo, R.C.N. (2009). Acute heart inflammation: Ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection. J Cell Mol Med 13(2), 279294.CrossRefGoogle ScholarPubMed
Melo, R.C.N., D'Avila, H., Fabrino, D.L., Almeida, P.E. & Bozza, P.T. (2003a). Macrophage lipid body induction by Chagas disease in vivo: Putative intracellular domains for eicosanoid formation during infection. Tissue Cell 35(1), 5967.CrossRefGoogle ScholarPubMed
Melo, R.C.N., Fabrino, D.L., D'Avila, H., Teixeira, H.C. & Ferreira, A.P. (2003b). Production of hydrogen peroxide by peripheral blood monocytes and specific macrophages during experimental infection with Trypanosoma cruzi in vivo. Cell Biol Int 27(10), 853861.CrossRefGoogle ScholarPubMed
Melo, R.C.N., Fabrino, D.L., Dias, F.F. & Parreira, G.G. (2006). Lipid bodies: Structural markers of inflammatory macrophages in innate immunity. Inflamm Res 55(8), 342348.CrossRefGoogle ScholarPubMed
Melo, R.C.N. & Machado, C.R. (2001). Trypanosoma cruzi: Peripheral blood monocytes and heart macrophages in the resistance to acute experimental infection in rats. Ex Parasitol 97(1), 1523.CrossRefGoogle ScholarPubMed
Moskovitz, B., Munichor, M. & Levin, D.R. (1987). Effect of diclofenac sodium (Voltaren) and prostaglandin E2 on spermatogenesis in mature dogs. Eur Urol 13(6), 393396.CrossRefGoogle ScholarPubMed
Nakanishi, Y. & Shiratsuchi, A. (2004). Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: Mechanisms and consequences. Biol Pharm Bull 27(1), 1316.CrossRefGoogle ScholarPubMed
Nogueira, N. & Cohn, Z.A. (1978). Trypanosoma cruzi: In vitro induction of macrophage microbicidal activity. J Ex Med 148(1), 288300.CrossRefGoogle ScholarPubMed
Oakberg, E.F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99(3), 391413.CrossRefGoogle ScholarPubMed
Ogawa, T., Arechaga, J.M., Avarbock, M.R. & Brinster, R.L. (1997). Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41(1), 111122.Google ScholarPubMed
Pacheco, P., Vieira-de-Abreu, A., Gomes, R.N., Barbosa-Lima, G., Wermelinger, L.B., Maya-Monteiro, C.M., Silva, A.R., Bozza, M.T., Castro-Faria-Neto, H.C., Bandeira-Melo, C. & Bozza, P.T. (2007). Monocyte chemoattractant protein-1/CC chemokine ligand 2 controls microtubule-driven biogenesis and leukotriene B4-synthesizing function of macrophage lipid bodies elicited by innate immune response. J Immunol 179(12), 85008508.CrossRefGoogle ScholarPubMed
Parreira, G.G., Ogawa, T., Avarbock, M.R., Franca, L.R., Brinster, R.L. & Russell, L.D. (1998). Development of germ cell transplants in mice. Biol Reprod 59(6), 13601370.CrossRefGoogle ScholarPubMed
Parreira, G.G., Ogawa, T., Avarbock, M.R., Franca, L.R., Hausler, C.L., Brinster, R.L. & Russell, L.D. (1999). Development of germ cell transplants: Morphometric and ultrastructural studies. Tissue Cell 31(3), 242254.CrossRefGoogle ScholarPubMed
Paul, A., Chang, B.H., Li, L., Yechoor, V.K. & Chan, L. (2008). Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res 102(12), 14921501.CrossRefGoogle ScholarPubMed
Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffe, M., Emile, J.F., Marchou, B., Cardona, P.J., de Chastellier, C. & Altare, F. (2008). Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4(11), e1000204.CrossRefGoogle ScholarPubMed
Ross, R. (1995). Cell biology of atherosclerosis. Annu Rev Physiol 57, 791804.CrossRefGoogle ScholarPubMed
Russell, L.D. & Brinster, R.L. (1996). Ultrastructural observations of spermatogenesis following transplantation of rat testis cells into mouse seminiferous tubules. J Androl 17(6), 615627.CrossRefGoogle ScholarPubMed
Russell, L.D., Chiarini-Garcia, H., Korsmeyer, S.J. & Knudson, C.M. (2002). Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 66(4), 950958.CrossRefGoogle ScholarPubMed
Russell, L.D., Ettlin, R.A., Sinha Hikim, A.P. & Clegg, E.D. (1990). Histological and Histopathological Evaluation of the Testis. Clearwater, FL: Cahe River Press.Google Scholar
Schlatt, S., de Kretser, D.M. & Hedger, M.P. (1999). Mitosis of resident macrophages in the adult rat testis. J Reprod Fertil 116(2), 223228.CrossRefGoogle ScholarPubMed
Singh, A. & Ezeasor, D. (1989). Ultrastructure of Sertoli cells in cryptorchid goats. Arch Androl 23(1), 6170.CrossRefGoogle ScholarPubMed
Takemura, T., Rom, W.N., Ferrans, V.J. & Crystal, R.G. (1989). Morphologic characterization of alveolar macrophages from subjects with occupational exposure to inorganic particles. Am Rev Respir Dis 140(6), 16741685.CrossRefGoogle ScholarPubMed
Triggiani, M., Oriente, A., Seeds, M.C., Bass, D.A., Marone, G. & Chilton, F.H. (1995). Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool. J Ex Med 182(5), 11811190.CrossRefGoogle ScholarPubMed
Vieira-de-Abreu, A., Calheiros, A.S., Mesquita-Santos, F.P., Magalhaes, E.S., Mourao-Sa, D., Castro-Faria-Neto, H.C., Bozza, M.T., Bandeira-Melo, C. & Bozza, P.T. (2011). Crosstalk between MIF and eotaxin in allergic eosinophil activation forms LTC4-synthesizing lipid bodies. Am J Respir Cell Mol Biol 44(4), 509516.CrossRefGoogle ScholarPubMed
Wang, H., Xiong, W., Chen, Y., Ma, Q., Ma, J., Ge, Y. & Han, D. (2006). Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction 132(3), 485492.CrossRefGoogle ScholarPubMed
Weller, P.F. & Dvorak, A.M. (1994). Lipid bodies: Intracellular sites for eicosanoid formation. J Allergy Clin Immunol 94(6Pt 2), 11511156.CrossRefGoogle ScholarPubMed
Winnall, W.R., Ali, U., O'Bryan, M.K., Hirst, J.J., Whiley, P.A., Muir, J.A. & Hedger, M.P. (2007). Constitutive expression of prostaglandin-endoperoxide synthase 2 by somatic and spermatogenic cells is responsible for prostaglandin E2 production in the adult rat testis. Biol Reprod 76(5), 759768.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Dias Supplementary Figure 1

Supplementary Figure 1. A representative male germ cell undergoing apoptosis. A degenerating germ cell with morphological features of apoptosis such as condensation of the nucleus, cell retraction, and increased electron density of the cytoplasmic matrix is seen at the tubular lumen in a spermatogonial stem cell-transplanted Wv/Wv mouse. L, lumen; SE, seminiferous epithelium. Scale bar, 5 mm.

Download Dias Supplementary Figure 1(PDF)
PDF 170.3 KB