Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T17:45:50.891Z Has data issue: false hasContentIssue false

Measuring Electronic and Structural Transformations in Solar Thermochemical Water Splitting Materials with Aberration-Corrected STEM-EELS

Published online by Cambridge University Press:  30 July 2021

Jamie Trindell
Affiliation:
Sandia National Lab, Pleasanton, California, United States
Joshua Sugar
Affiliation:
Sandia National Laboratories, Livermore, California, United States
Anthony McDaniel
Affiliation:
Sandia National Laboratories, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Microscopy & Spectroscopy of Energy Conversion and Storage Materials
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Bulfin, B.; Vieten, J.; Agrafiotis, C.; Roeb, M.; Sattler, C., Applications and limitations of two step metal oxide thermochemical redox cycles; a review. Journal of Materials Chemistry A 2017, 5 (36), 18951-18966.Google Scholar
Bayon, A.; de la Calle, A.; Ghose, K. K.; Page, A.; McNaughton, R., Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review. International Journal of Hydrogen Energy 2020, 45 (23), 12653-12679.CrossRefGoogle Scholar
Barcellos, D. H.; Sanders, M. D.; Tong, J.; McDaniel, A. H.; O'Hayre, R. P., BaCe0.25Mn0.75O3−δ—a promising perovskite-type oxide for solar thermochemical hydrogen production. Energy & Environmental Science 2018, 11 (11), 3256-3265.CrossRefGoogle Scholar
Naghavi, S. S.; He, J. G.; Wolverton, C., CeTi2O6-A Promising Oxide for Solar Thermochemical Hydrogen Production. Acs Applied Materials & Interfaces 2020, 12 (19), 21521-21527.CrossRefGoogle ScholarPubMed
Qian, X.; He, J.; Mastronardo, E.; Baldassarri, B.; Wolverton, C.; Haile, S. M., Favorable Redox Thermodynamics of SrTi0.5Mn0.5O3−δ in Solar Thermochemical Water Splitting. Chemistry of Materials 2020, 32 (21), 9335-9346.CrossRefGoogle Scholar
Haeussler, A.; Abanades, S.; Jouannaux, J.; Julbe, A., Non-Stoichiometric Redox Active Perovskite Materials for Solar Thermochemical Fuel Production: A Review. Catalysts 2018, 8 (12).Google Scholar
Dey, S.; Naidu, B. S.; Govindaraj, A.; Rao, C. N., Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. Phys Chem Chem Phys 2015, 17 (1), 122-5.CrossRefGoogle ScholarPubMed
Pearson, D. H.; Fultz, B.; Ahn, C. C., Measurements of 3dstate occupancy in transition metals using electron energy loss spectrometry. Applied Physics Letters 1988, 53 (15), 1405-1407.CrossRefGoogle Scholar
Yedra, L.; Xuriguera, E.; Estrader, M.; Lopez-Ortega, A.; Baro, M. D.; Nogues, J.; Roldan, M.; Varela, M.; Estrade, S.; Peiro, F., Oxide Wizard: an EELS application to characterize the white lines of transition metal edges. Microsc Microanal 2014, 20 (3), 698-705.CrossRefGoogle ScholarPubMed