Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T19:37:14.311Z Has data issue: false hasContentIssue false

Luminescence Database I—Minerals and Materials

Published online by Cambridge University Press:  03 March 2008

Colin M. MacRae
Affiliation:
CSIRO Minerals, Microbeam Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
Nicholas C. Wilson
Affiliation:
CSIRO Minerals, Microbeam Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
Get access

Abstract

A luminescence database for minerals and materials has been complied from the literature, the aim being to create a resource that will aid in the analysis of luminescence spectral of ionic species in minerals and materials. The database is based on a range of excitation techniques and records both major and minor lines, and their activators. The luminescence techniques included in the database are cathodoluminescence, ion luminescence, and photoluminescence. When combined with other traditional X-ray measurements collected on the same region, use of the luminescence database will give additional insight into the chemistry of minerals and materials.

Type
Research Article
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anicete-Santos, M., Orhan, E., de Maurera, M.A.M.A., Simoes, L.G.P., Souza, A.G., Pizani, P.S., Leite, E.R., Varela, J.A., Juan, A., Beltran, A. & Longo, E. (2007). Contribution of structural order-disorder to the green photoluminescence of PbWO4. Phys Rev B 75, 165105.Google Scholar
Awazu, K. & Kawazoe, H. (1990). O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation. J Appl Phys 68, 35843591.Google Scholar
Balberg, I. & Pankove, J.I. (1971). Cathodoluminescence of magnetite. Phys Rev Lett 27, 13711374.Google Scholar
Barbarand, J. & Pagel, M. (2001). Cathodoluminescence study of apatite crystals. Am Mineral 86, 473484.Google Scholar
Benstock, E.J., Buseck, P.R. & Steele, I.M. (1997). Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. Am Mineral 82, 310315.Google Scholar
Bhagwat, U.A., Sastry, M. & Kulkarni, S.K. (1995). Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 67, 27022704.Google Scholar
Bhalla, R.J.R.S.B. & White, E.W. (1970). Polarized cathodoluminescence emission from Willemite [Zn2SiO4(Mn)] single crystals. J Appl Phys 41, 22672268.Google Scholar
Bhalla, R.J.R.S.B. & White, E.W. (1972). Cathodoluminescence characteristics of Mn2+-activated willemite (Zn2SiO4) single crystals. J Electrochem Soc 119, 740743.Google Scholar
Bol, A.A., Ferwerda, J., Bergwerff, J.A. & Meijerink, A. (2002). Luminescence of nanocrystalline ZnS:Cu2+. J Lumin 99, 325334.Google Scholar
Bulanyi, M.F., Klimenko, V.I., Kovalenko, A.V. & Polezhaev, B.A. (2003). Defect structure and luminescence behaviour of ZnS:Mn2+ crystals. Inorg Mater 39, 436439.Google Scholar
Burns, G., Geiss, E.A., Jenkins, B.A. & Nathan, M.I. (1965). Cr3+ fluorescence in garnets and other crystals. Phys Rev 139, A1687.Google Scholar
Can, N., Townsend, P.D., Hole, D.E., Snelling, H.V., Ballesteros, J.M. & Afonso, C.N. (1995). Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica. J Appl Phys 78, 67376744.Google Scholar
Cesborn, F., Blanc, P., Ohnenstetter, D. & Remond, G. (1995). Cathodoluminescence of rare earth doped zircons. I. Their possible use as reference materials. Scanning Microsc Suppl 9, 3536.Google Scholar
Chandrasekhar, B.K. & White, W.B. (1992). Polarized luminescence spectra of kunzite. Phys Chem Miner 18, 433440.Google Scholar
Chapoulie, R., Bechtel, F., Borschneck, D., Schvoerer, M. & Remond, G. (1995). Cathodoluminescence of some synthetic calcite crystals. Investigation of the role played by cerium. Scanning Microsc Suppl 9, 225232.Google Scholar
Chen, W., Su, F.H., Li, G.H., Joly, A.G., Malm, J.O. & Bovin, J.O. (2002). Temperature and pressure dependencies of the Mn2+ and donor-acceptor emissions in ZnS:Mn2+ nanoparticles. J Appl Phys 92, 19501955.Google Scholar
Choi, H.W., Jeon, C.W., Dawson, M.D., Edwards, P.R., Martin, R.W. & Tripathy, S. (2003). Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. J Appl Phys 93, 59785982.Google Scholar
Choi, S.H., Park, C.O., Park, H.S., Park, S.H.K. & Yunc, S.J. (2004). Cathodoluminescence and photoluminescence properties of CaS thin film codoped with Pb and Cu. J Electrochem Soc 151, H184H187.Google Scholar
Crabtree, D.F. (1974). Cathodoluminescence of tin oxide doped with terbium. J Phys D: Appl Phys 7, 2226.Google Scholar
D'Almeida, T. (1997). Cathodoluminescence des ions de terras rares dans les fluorures alcalinoterreux: utilisation comme sonde locale detemperature et applications. These de doctorat de l'Universite de Reims Champagne-Ardenne. Unpublished.
Derham, C.J., Geake, J.E. & Walker, G. (1964). Luminescence of enstatite achondrite meteorites. Nature 203, 134136.Google Scholar
Díaz-Guerra, C., Piqueras, J. & Cavallini, A. (2003). Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN. Appl Phys Lett 82, 20502052.Google Scholar
Dorenbos, P. (2003). Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J Phys Condens Matter 15, 26452665.Google Scholar
Edgington, J.A. & Blair, I.M. (1970). Luminescence and thermoluminescence induced by bombardment with protons of 159 million electron volts. Science 167, 715717.Google Scholar
Edwards, P.R., Martin, R.W., O'Donnell, K.P. & Watson, I.M. (2003). Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers. Physica Status Solidi 7, 24742477.Google Scholar
Eremenko, G. & Khrenov, A. (1982). Luminescence of baddeleyite. Mineral Zh 4, 9395.Google Scholar
Fernandez, I. & Llopis, J. (1988). Reducing effects on the CL red emission of MgO doped crystals. Phys Stat Sol (a) 108, K163K167.Google Scholar
Finch, A.A., Garcia-Guinea, J., Hole, D.E., Townsend, P.D. & Hanchar, J.M. (2004). Ionoluminescence of zircon: Rare earth emissions and radiation damage. J Phys D: Appl Phys 37, 27952803.Google Scholar
Finch, A.A. & Klein, J. (1999). The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135, 234243.Google Scholar
Friebele, E.J., Griscom, D.L. & Marrone, M.J. (1985). The optical absorption and luminescence bands near 2 eV in irradiated and drawn synthetic silica. J Non-Cryst Solids 71, 133144.Google Scholar
Gaft, M., Reisfeld, R. & Panczer, G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin Heidelberg: Springer.
Gaft, M., Reisfeld, R., Panczer, G., Blank, P. & Boulon, G. (1998). Laser-induced time-resolved luminescence of minerals. Spectrochim Acta Part A 54, 21632175.Google Scholar
Garcia, J.A., Remon, A. & Piqueras, J. (1986). Red luminescence from quenched MgO crystals. Solid State Commun 58, 555558.Google Scholar
Geake, J.E., Walker, G., Mills, A.A. & Garlick, G.F.J. (1971). Luminescence of Apollo lunar samples. In Proceedings of the Second Lunar Conference, Levinson, A.A. (Ed.), Geochimica et Cosmochimica Acta, Suppl. 2, pp. 22652275. Cambridge MA: MIT.
Godlewski, M., Guziewicz, E., Kopalko, K., Lusakowska, E., Dynowska, E., Godlewski, M.M., Goldys, E.M. & Phillips, M.R. (2003). Origin of white color light emission in ALE-grown ZnSe. J Lumin 102, 455459.Google Scholar
Gorbunov, S.V., Zatsepin, A.F., Pustovarov, V.A., Cholakh, S.O. & Yakovlev, V.Y. (2005). Electronic excitations and defects in nanostructural Al2O3. Phys Solid State 47, 733737.Google Scholar
Gorton, N.T., Walker, G. & Burley, S.D. (1997). Experimental analysis of the composite blue cathodoluminescence emission in quartz. J Lumin 72-4, 669671.Google Scholar
Gorz, H., Bhalla, R.J.R.S.B. & White, E.W. (1970). Detailed cathodoluminescence characterisation of common silicates. Proceeding of a Workshop on Solid State Luminescent Phenomena, pp. 112.
Gotze, J. (2000). Materials characterisation by cathodoluminescence microscopy and spectroscopy. In Proceedings of the Sixth International Congress on Applied Mineralogy in Research, Economy, Technology, Ecology and Culture, pp. 783786. Gottingen, Germany: Balkema, Rotterdam.
Gotze, J. (2002). Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374, 703708.Google Scholar
Gotze, J., Habermann, D., Neuser, R.D. & Richter, D.K. (1999). High-resolution spectrometric analysis of rare earth elements—Activated cathodoluminescence in feldspar minerals. Chem Geol 153, 8191.Google Scholar
Gotze, J., Plotze, M., Gotte, T., Neuser, R.D. & Richter, D.K. (2002). Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals. Mineral Petrol 76, 195212.Google Scholar
Grant, P.R. & White, S.H. (1978). Cathodoluminescence and microstructure of quartz overgrowths on quartz. Scan Electr Microsc 1, 789794.Google Scholar
Griscom, D.L. (1985). Defect structure of glasses: Some outstanding questions in regard to vitreous silica. J Non-Cryst Solids 73, 5177.Google Scholar
Gritsenko, B.P. & Lisitsyn, V.M. (1985). Sov Phys Solid State 27, 1330.
Gruber, J.B., Zandi, B., Lozykowski, H.J. & Jadwisienczak, W.M. (2002). Spectra and energy levels of Tb3+ (4f8) in GaN. J Appl Phys 92, 51275132.Google Scholar
Guo, Q.X., Hachiya, Y., Tanaka, T., Nishio, M. & Ogawa, H. (2006). Cathodoluminescence study of anodic nanochannel alumina. J Lumin 119, 253257.Google Scholar
Gurumurugan, K., Hong, C., Harp, G.R., Jadwisienczak, W.M. & Lozykowski, H.J. (1999). Visible cathodoluminescence of Er-doped amorphous AlN thin films. Appl Phys Lett 74, 30083010.Google Scholar
Guzzi, M., Martini, M., Mattaini, M., Pio, F. & Spinolo, G. (1987). Luminescence of fused silica: Observation of the O2 emission band. Phys Rev B 35, 9407.Google Scholar
Habermann, D. (2002). Quantitative cathodoluminescence (CL) spectroscopy of minerals: Possibilities and limitations. Mineral Petrol 76, 247259.Google Scholar
Habermann, D., Meijer, J., Neuser, R.D., Richter, D.K., Rolfs, C. & Stephan, A. (1999). Micro-PIXE and quantitative cathodoluminescence spectroscopy: Combined high resolution trace element analyses in minerals. Nucl Instrum Methods Phys Res, Sect B 150, 470477.Google Scholar
Habermann, D., Niklas, J.R., Meijer, J., Stephan, A. & Gotte, T. (2001). Structural point defects in “Iceland spar” calcite. Nucl Instrum Methods Phys Res, Sect B 181, 563569.Google Scholar
Hagni, R. (1984). Cathodoluminescence microscopy applied to mineral exploration and beneficiation. In Second International Congress on Applied Mineralogy, Park, W.C., Hausen, D.M. & Hagni, R.D. (Eds.), pp. 4166. New York: American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.
Hagni, R. & Karakus, M. (1989). Cathodoluminescence microscopy: A valuable technique for studying ceramic materials. Materials Research Society Bulletin 14, 11, 5459.Google Scholar
Hanusiak, W.M. & White, E.W. (1975). SEM cathodoluminescence for characterization of damaged and undamaged alpha-quartz in respirable dusts. In 8th Annual Scanning Electron Microscope Symposium, Johari, O. & Corvin, I. (Eds.), pp. 125132. Chicago: IIT Research Institute.
Hashimoto, T., Sakaue, S., Aoki, H. & Ichino, M. (1994). Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing treatment. Radiat Meas 23, 293299.Google Scholar
Hichou, A.E., Addou, M., Bubendorff, J.L., Ebothe, J., Idrissi, B.E. & Troyon, M. (2004). Microstructure and cathodoluminescence study of sprayed Al and Sn doped ZnS thin films. Semicond Sci Technol 19, 230235.Google Scholar
Hirata, G., Perea, N., Tejeda, M., Gonzalez-Ortega, J.A. & McKittrick, J. (2005). Luminescence study in Eu-doped aluminium oxide phosphors. Opt Mater 27, 13111315.Google Scholar
Holness, M.B. & Watt, G.R. (2001). Quartz recrystallisation and fluid flow during contact metamorphism: A cathodoluminescence study. Geofluids 1, 215218.Google Scholar
Itoh, C., Tanimura, K. & Itoh, N. (1988). Optical studies of self-trapped excitons in SiO2. J Phys C: Solid State Phys 21, 46934702.Google Scholar
Jadwisienczak, W.M. & Lozykowski, H.J. (2003). Optical properties of Yb ions in GaN epilayer. Opt Mater 23, 175181.Google Scholar
Jones, C.E. & Embree, D. (1976). Correlations of the 4.77–4.28 eV luminescence band in silicon dioxide with the oxygen vacancy. J Appl Phys 47, 53655371.Google Scholar
Karakus, M. (2005). Cathodoluminescence microscopy and spectroscopy characterisation of refractory and advanced structural ceramics. In UNITECR '05: Proceedings of the Unified International Technical Conference on Refractories: 9th Biennial Worldwide Congress on Refractories, Smith, J.D. (Ed.), pp. 330334. Orlando, FL: American Ceramic Society.
Karakus, M., Crites, M.D. & Schlesinger, M.E. (2000). Cathodoluminescence microscopy characterization of chrome-free refractories for copper smelting and converting furnaces. J Microsc Oxford 200, 5058.Google Scholar
Karakus, M., Hagni, R.D. & Spreng, A.C. (2001). Cathodoluminescence petrography and chemistry of the phosphate grains in the lower Jurassic (Aalenian) ironstones of Lorraine, France. In Studies on Ore Deposits, Mineral Economics, and Applied Mineralogy: With Emphasis on Missippi Valley-Type Base Metals and Carbonate-Related Ore Deposits, Hagni, R.D. (Ed.), pp. 335363. Rolla, MO: University of Missouri-Rolla Press.
Karakus, M. & Moore, R.E. (1988). CLM—A new technique for refractories. Ceram Bull 77, 5561.Google Scholar
Katona, T.M., Craven, M.D., Speck, J.S. & DenBarns, S.P. (2004). Cathodoluminescence study of deep ultraviolet quantum wells grown on maskless laterally epitaxial overgrown AlGaN. Appl Phys Lett 85, 13501352.Google Scholar
Kempe, U. & Gotze, J. (2002). Cathodoluminescence (CL) behaviour and crystal chemistry from rare-metal deposits. Mineral Mag 66, 151172.Google Scholar
Kempe, U., Plotze, M., Brachmann, A. & Bottcher, R. (2002). Stabilisation of divalent rare earth elements in natural fluorite. Mineral Petrol 76, 213234.Google Scholar
Kiflawi, I. & Lang, A.R. (1974). Linearly polarized luminescence from linear defects in natural and synthetic diamond. Philos Mag 30, 219223.Google Scholar
Kobayashi, Y., Sato, S., Hitomi, A., Isshiki, T., Saijo, H., Nomura, T. & Shiojiri, M. (1998). Cathodoluminescence scanning electron microscopy observations of (SrBaCa)TiO3 ceramic varistors. J Electron Microsc 47, 2937.Google Scholar
Kominami, H., Tanka, M., Hara, K., Nakanishi, Y. & Hatanaka, Y. (2006). Synthesis and luminescence properties of Mg-Ti-O:Eu red-emitting phosphors. Phys Stat Sol (c) 3, 27582761.Google Scholar
Koyama, H. (1980). Cathodoluminescence study of SiO2. J Appl Phys 51, 22282235.Google Scholar
Laud, K.R., Gibbons, E.F., Tien, T.Y. & Stadler, H.L. (1971). Cathodoluminescence of Ce3+ and Eu2+ activated alkaline earth feldspars. J Electrochem Soc 118, 918923.Google Scholar
Lee, M.R., Martin, R.W., Trager-Cowan, C. & Edwards, P.R. (2005). Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping. J Sedim Res 75, 313322.Google Scholar
Leverenz, H.W. (1968). An Introduction to Luminescence of Solids. New York: Dover.
Lin, C., Wang, H., Kong, D., Yu, M., Liu, X., Wang, Z. & Lin, J. (2006). Silica supported submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ spherical particles with a core-shell structure: Sol-gel synthesis and characterisation. Eur J Inorg Chem 2006, 36673675.Google Scholar
Lin, Y., Tang, Z., Zhang, Z., Wang, X. & Zhang, J. (2001a). Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett 20, 15051506.Google Scholar
Lin, Y., Zhang, Z., Tang, Z., Wang, X., Zhang, J. & Zheng, Z. (2001b). Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor. J Eur Ceram Soc 21, 683685.Google Scholar
Loferski, J.J., Schewchun, J., Mittleman, S.D., DeMeo, E.A., Arnott, R., Hwang, H.L., Beaulieu, R. & Chapman, G. (1979). Cathodoluminescence characteristics of CuxS films produced by different methods. Solar Energy Mater 1, 157169.Google Scholar
Lozykowski, H.J., Jadwisienczak, W.M. & Brown, I. (1999). Visible cathodoluminescence of GaN doped with Dy, Er, and Tm. Appl Phys Lett 74, 11291131.Google Scholar
Luff, B.J. & Townsend, P.D. (1990). Cathodoluminescence of synthetic quartz. J Phys Condens Matter 2, 80898097.Google Scholar
MacRae, C.M. & Miller, P.R. (2003). Electron microscopy in mineral processing. In Industrial Applications of Electron Microscopy, Zhigang, R.L. (Ed.), pp. 187212. New York: Marcel Dekker.
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & Otsuki, M. (2005). Hyperspectral mapping—combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Tech 67, 271277.Google Scholar
MacRae, C.M., Wilson, N.C. & Otsuki, M. (2001). Holistic mapping in an electron microprobe. In Microscopy and Microanalysis, Vol. 7, Suppl. 2, Bailey, G.W. (Ed.), pp. 146147. New York: Springer.
Manfredotti, C., Cossio, R., Lo Giudice, A., Vittone, E. & Fizzotti, F. (2006). Vibronic spectrum of c-BN with cathodoluminescence. Phys Rev B 74, 17.Google Scholar
Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin, Heidelberg, New York: Springer-Verlag.
Marfunin, A.S. (1995). Advanced Mineralogy. Berlin: Springer-Verlag.
Mariano, A.N. (1978). The application of cathodoluminescence for carbonatite exploration and characterization. In International Symposium on Carbonatites, 1st ed., Pocos de Caldas, Minas Gerais, Brazil, Braga, C.J. (Ed.), pp. 3957.
Mariano, A.N., Ito, J. & Ring, P.J. (1973). Cathodoluminescence of plagioclase feldspars. In Geological Society of America, Vol. 5, p. 726. Boulder, CO: Geological Society of America.
Mariano, A.N. & Ring, P.J. (1975). Europium-activated cathodoluminescence in minerals. Geochim Cosmochim Acta 39, 649660.Google Scholar
Marshall, D.J. (1988). Cathodoluminescence of Geological Materials. London, UK: Unwin Hyman Ltd.
Martin, R.W., Edwards, P.R., O'Donnell, K.P., Mackay, E.G. & Watson, I.M. (2002). Microcomposition and luminescence of InGaN emitters. Phys Status Solidi A 192, 117123.Google Scholar
Mason, R., Clouter, M. & Goulding, R. (2005). The luminescence decay-time of Mn2+ activated calcite. Phys Chem Miner 32, 451459.Google Scholar
McKnight, S.W. & Palik, E.D. (1980). Cathodoluminescence of SiO2 films. J Non-Cryst Solids 40, 595603.Google Scholar
Medlin, W.L. (1963). Emission centers in thermoluminescent calcite, dolomite, magnesite, aragonite, and anhydrite. J Opt Soc Am 53, 12761285.Google Scholar
Medlin, W.L. (1964). Trapping centers in thermoluminescent calcite. Phys Rev 135, 17701779.Google Scholar
Mei, Y.F., Fu, R.K.Y., Siu, G.G., Wong, K.W., Chu, P.K., Wang, R.S. & Ong, H.C. (2006). Nitrogen binding behaviour in ZnO films with time-resolved cathodoluminescence. Appl Surf Sci 252, 81318134.Google Scholar
Merano, M., Sonderegger, S., Crottini, A., Collin, S., Renucci, P., Pelucchi, E., Malko, A., Baier, M.H., Kapon, E., Deveaud, B. & Ganiere, J.D. (2005). Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479482.Google Scholar
Moore, R.E. & Karakus, M. (1994). Cathodoluminescence microscopy: A technique uniquely suited to the solution of refractory wear problems. Int Ceram Mono 1, 925940.Google Scholar
Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K. & Hama, Y. (1990). Various types of nonbridging oxygen hole center in high-purity silica glass. J Appl Phys 68, 12121217.Google Scholar
Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Nagasawa, K. & Hama, Y. (1992). Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Phys Rev B 45, 586.Google Scholar
Odin, I.N., Chukichev, M.V., Ivanov, V.A. & Rubina, M.E. (2001). Cathodoluminescence of Cd4SiS6, Cd4SiSe6, and S-doped CdS, CdSe and CdTe crystals. Inorg Mater 37, 445448.Google Scholar
Pagel, M., Barbin, V., Blanc, P. & Ohnestetter, D. (2000). Cathodoluminescence in Geosciences. Berlin, New York: Springer.
Petrov, V.I. (1996). Cathodoluminescence microscopy. Physics—Uspekhi 39, 807818.Google Scholar
Ponahlo, J. (1993). Kathodolumineszenz (KL) und KL-spektren von edelsteinen. Z Dt Gemmol Ges 42, 101113.Google Scholar
Ponahlo, J. (1999). Kathodolumineszenz- und absorptionsspektren gelber saphire. Z Dt. Gemmol Ges 39, 225228.Google Scholar
Portnov, A.M. & Gorobets, B.S. (1969). Luminescence of apatite from different rock types. Doklady Akademii Nauk SSSR 184, 11013.Google Scholar
Pott, G.T. & McNicol, B.D. (1971). Spectroscopic study of the coordination and valence of Fe and Mn ions in and on the surface of aluminas and silicas. Disc Faraday Soc 52, 121131.Google Scholar
Randall, J.T. (1939). Some recent experiments in luminescence. Trans Faraday Soc 35, 214.Google Scholar
Remond, G., Cesborn, F., Chapoulie, R., Ohnenstetter, D., Roque-Carmes, C. & Schvoerer, M. (1992). Cathodoluminescence applied to the microcharacterization on mineral materials: A present status in experimentation and interpretation. Scan Microsc 6, 2368.Google Scholar
Remond, G., Phillips, M.R. & Roque-Carmes, C. (2000). Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 108113. Heidelberg: Springer Verlag.
Richter, D.K., Gotte, T., Gotze, J. & Neuser, R.D. (2003). Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79, 127166.Google Scholar
Roeder, P.L., MacArthur, D., Ma, X., Palmer, G.R. & Mariano, A.N. (1987). Cathodoluminescence and microprobe study of rare-earth elements in apatite. Am Mineral 72, 801811.Google Scholar
Saparin, G.V., Mokhov, E.N., Obyden, S.K. & Roenkov, A.D. (1996). Real color cathodoluminescence scanning electron microscopy—A new effective method for study of SiC materials and devices. Scanning 18, 2534.Google Scholar
Schulman, J.H., Evans, L.W., Ginther, R.J. & Murata, K.J. (1947). The sensitized luminescence of manganese-activated calcite. J Appl Phys 18, 732739.Google Scholar
Sigel, G.H. & Marrone, M.J. (1981). Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of non-bridging oxygen defect centers. J Non-Cryst Solids 45, 235247.Google Scholar
Singh, N., Marwaha, G.L. & Mathur, V.K. (1981). Luminescence centres and charge compenstation in CaS phosphors. Phys Stat Sol (a) 66, 761765.Google Scholar
Sippel, R.F. & Spencer, A.B. (1970). Luminescence petrography and properties of lunar crystalline rocks and breccias. In Proceedings of the Apollo 11 Lunar Science Conference, Levinson, A.A. (Ed.), pp. 24132426. Geochim et Cosmochim Acta, Suppl. 1.
Skuja, L.N., Guttler, B., Schiel, D. & Silin, A.R. (1998). Infrared photoluminescence of preexisting or irradiation-induced interstitial oxygen molecules in glassy SiO2 and alpha-quartz. Phys Rev B 58, 1429614304.Google Scholar
Skuja, L.N., Silin, A.R. & Boganov, A.G. (1984a). On the nature of the 1.9 eV luminescence centers in amorphous SiO2. J Non-Cryst Solids 63, 431436.Google Scholar
Skuja, L.N., Streletsky, A.N. & Pakovich, A.B. (1984b). A new intrinsic defect in amorphous SiO2—Twofold coordinated silicon. Solid State Commun 50, 1069.Google Scholar
Skuja, L.N. & Trukhin, A.N. (1989). Comment on “Luminescence of fused silica: Observation of the O2 emission band.” Phys Rev B 39, 3909.Google Scholar
Smith, A.L. (1949). New complex silicate phosphors containing calcium, magnesium, and beryllium. J Electrochem Soc 96, 287296.Google Scholar
Sommer, S.E. (1972). Cathodoluminescence of carbonates, 1. Characterization of cathodoluminescence from carbonate solid solutions. Chem Geol 9, 257273.Google Scholar
Stevens-Kalceff, M.A. (2000). Electro-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs. Phys Rev Lett 84, 31373140.Google Scholar
Stevens-Kalceff, M.A. & Phillips, M.R. (1995). Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52, 31223134.Google Scholar
Stevens-Kalceff, M.A., Stesmans, A. & Wong, J. (2002). Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm. Appl Phys Lett 80, 758760.Google Scholar
Sun, X.L., Goss, S.H., Brillson, L.J., Look, D.C. & Molnar, R.J. (2002). Depth-dependent investigation of defects and impurity doping in GaN/sapphire using scanning electron microscopy and cathodoluminescence spectroscopy. J Appl Phys 91, 67296738.Google Scholar
Tarashchan, A.N. (1978). Luminescence of Minerals. Kiev: Naukova Dumka.
Telfer, D.J. & Walker, G. (1978). Ligand field bands of Mn2+ and Fe3+ luminescence centres and their site occupancy in plagioclase feldpsars. Mod Geol 6, 199210.Google Scholar
Tiginyanu, I.M., Langa, S., Sirbu, L., Monaico, E., Stevens-Kalceff, M.A. & Foll, H. (2004). Cathodoluminescence microanalysis of porous GaP and InP structures. Eur Phys J Appl Phys 27, 8184.Google Scholar
Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, K. & Hama, Y. (1989). 2.7-eV luminescence in as-manufactured high-purity silica glass. Phys Rev Lett 62, 1388.Google Scholar
Toyama, T., Adachi, D. & Okamoto, H. (2000). Electroluminescent devices with nanostructured ZnS:Mn emission layer operated at 20 V0-p. Mater Res Soc Symp Proc 621, Q4.4.1Q4.4.6.Google Scholar
Trukhin, A.N. & Plaudis, A.E. (1979). Investigation of intrinsic luminescence of SiO2. Sov Phys Solid State 21, 644646.Google Scholar
Vernon-Parry, K.D., Davies, G. & Galloway, S. (2005). Electronic and structural properties of grain boundaries in electron-irradiated edge-defined film-fed growth silicon. Semicond Sci Technol 20, 171174.Google Scholar
Vu, T.A., Gotze, J., Burkhardt, J., Ulbricht, J. & Habermann, D. (1998). Application of optical and spectral cathodoluminescence in the study of MgO refractories. Int Ceram 47, 164167.Google Scholar
Walker, G., Abumere, O.E. & Kamaluddin, B. (1989). Luminescence spectroscopy of Mn2+ centres in rock-forming carbonates. Mineral Mag 53, 201211.Google Scholar
Walker, G. & Burley, S.D. (1991). Luminescence petrology and spectroscopic studies in diagentic minerals. In Luminescence Microscopy: Qualitative and Quantitative Applications. SPEM Short Course 25, Barker, C.E. & Kopp, O.C. (Eds.), pp. 8396. Tulsa, OK: SPEM (Society for Sedimentary Geology).
Walker, G., El Jaer, A., Sherlock, R., Glynn, T.J., Czaja, M. & Mazurak, Z. (1997). Luminescence spectroscopy of Cr3+ and Mn2+ in spodumene (LiAlSi2O6). J Lumin 72–74, 278280.Google Scholar
Walker, G., Kamaluddin, B., Glynn, T.J. & Sherlock, R. (1994). Luminescence of Ni2+ centres in forsterite (MgSiO4). J Lumin 60–61, 123126.Google Scholar
Wang, P.W., Haglund, R.F., Kinser, D.L., Mendenhall, M.H., Tolk, N.H. & Weeks, R.A. (1988). Luminescence induced by low energy electron deposition in Suprasil® and Spectrosil® glasses. J Non-Cryst Solids 102, 288294.Google Scholar
Xu, S.J., Chua, S.J., Liu, B., Gan, L.M., Chew, C.H. & Xu, G.Q. (1998). Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment. Appl Phys Lett 73, 478480.Google Scholar
Yacobi, B.G. & Holt, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York, London: Plenum Press.
Yang, X.H. & McKeever, S.W.S. (1990). The predose effect in crystalline quartz. J Phys D: Appl Phys 23, 237244.Google Scholar
Zorenko, Y.V., Turchak, R.M., Voznyak, T.I. & Luchechko, A.P. (2006). Luminescence of CsBr:Eu films grown by liquid-phase epitaxy. J Appl Phys 73, 211215.Google Scholar