Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T05:20:29.620Z Has data issue: false hasContentIssue false

Local Measurement and Computational Refinement of Aberrations for HRTEM

Published online by Cambridge University Press:  11 October 2006

Angus I. Kirkland
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
Rüdiger R. Meyer
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
Lan-Yun Shery Chang
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
Get access

Abstract

Methods for accurate and automated determination of the coefficients of the wave aberration function are compared with particular emphasis on measurements of higher order coefficients in corrected instruments. Experimental applications of aberration measurement to the determination of illumination isoplanicity and high precision local refinement of restored exit waves are also described.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baba, N., Oho, E., & Kanaya, K. (1987). An algorithm for online digital image processing for assisting automatic focusing and astigmatism correction in electron microscopy. Scan Microsc 1, 15071514.Google Scholar
Chand, G. (1997). Aberration determination and compensation in high resolution electron microscopy. PhD Thesis. Cambridge, UK: University of Cambridge.
Fan, G. & Krivanek, O. (1990). Computer controlled HREM alignment using automated diffractogram analysis. In Electron Microscopy, Peachey, L. & Williams, D. (Eds.), vol. 1, pp. 532533. San Francisco: San Francisco Press.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., & Urban, K. (1998). A spherical aberration corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Hawkes, P. & Kasper, E. (Eds.). (1989). Principles of Electron Optics: Wave Optics. London: Academic Press.
Hawkes, P. & Kasper, E. (Eds.). (1996). Principles of Electron Optics: Wave Optics. London: Academic Press.
Hutchison, J., Titchmarsh, J., Cockayne, D., Doole, R., Hetherington, C., Kirkland, A.I., & Sawada, H. (2005). A versatile double aberration corrected energy filtered TEM/STEM for materials science. Ultramicroscopy 103, 715.Google Scholar
Kirkland, A.I., Saxton, W.O., Chau, K.L., Tsuno, K., & Kawasaki, M. (1995). Super resolution by aperture synthesis: Tilt series reconstruction in CTEM. Ultramicroscopy 57, 355374.Google Scholar
Koster, A.J. (1989). Practical autotuning of a transmission electron microscope. Ultramicroscopy 31, 473474.Google Scholar
Koster, A.J. & de Ruijter, W.J. (1992). Practical autoalignment of transmission electron microscopes. Ultramicroscopy 40, 89107.Google Scholar
Koster, A.J., de Ruijter, W.J., van den Bos, A., & van der Mast, K.D. (1989). Autotuning of a TEM using minimum electron dose. Ultramicroscopy 27, 251272.Google Scholar
Koster, A.J., van den Bos, A., & van der Mast, K.D. (1987). An autofocus method for a TEM. Ultramicroscopy 21, 209221.Google Scholar
Krivanek, O.L. (1976). A method for determining the coefficient of spherical aberration from a single micrograph. Optik 45, 97101.Google Scholar
Krivanek, O.L. & Leber, M.L. (1994). Autotuning for 1 Å resolution. In Proceedings of the 13th ICEM, vol. 1 of Electron Microscopy 1994, Jouffrey, B. & Coliex, C. (Eds.), pp. 157158. Paris: les Editions de Physique.
Kuglin, C.D. & Hines, D.C. (1975). The phase correlation image alignment method. In Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163165. New York: IEEE Press.
Lentzen, M., Jahnen, B., Jia, C., Thust, A., Tillmann, K., & Urban, K. (2002). High-resolution imaging with an aberration corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Meyer, R. (2002). Quantitaive automated object wave restoration in high resolution electron microscopy. Ph.D. Thesis. Dresden: Dresden Technical University.
Meyer, R.R. & Kirkland, A.I. (1998). The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75, 2333.Google Scholar
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E., & Hutchison, J.L. (2000). Experimental characterisation of CCD cameras for HREM at 300kV. Ultramicroscopy 85, 913.Google Scholar
Meyer, R., Kirkland, A., & Saxton, W. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89109.Google Scholar
Meyer, R., Kirkland, A., & Saxton, W. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99, 115123.Google Scholar
Otten, M. & Coene, W. (1993). High resolution imaging on a field emission TEM. Ultramicroscopy 48, 7791.Google Scholar
Pan, M. (1998). TEM autotuning with slow-scan CCD cameras. In Proceedings of the 14th ICEM, vol. 1 of Electron Microscopy 1998, Benavidez, H.A.C. & Yacaman, M.J. (Eds.), pp. 263264. Cancun: IoP.
Rose, H. (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Methods 187, 187199.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiplanatic medium voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Rose, H. & Plies, E. (1973). The phase correlation image alignment method. In Image Processing and Computer Aided Design in Electron Optics, Hawkes, P.W. (Ed.), pp. 344369. London: Academic Press.
Saxton, W.O. (1988). Accurate atoms positions from focal series of high-resolution electron micrographs. In Image and Signal Processing in Electron Microscopy, Proceedings of the 6th Pfefferkorn Conference, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago: Scanning Microscopy International.
Saxton, W. (1994). What is the focus variation method? Is it new? Is it direct? Ultramicroscopy 55, 171181.Google Scholar
Saxton, W.O. (1995). Observation of lens aberrations for very high resolution electron microscopy. J Microsc 179, 201213.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.Google Scholar
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.Google Scholar
Urban, K., Kabius, B., Haider, M., & Rose, H. (1999). A way to higher resolution: Spherical aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48, 821826.Google Scholar
Zemlin, F. (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241245.Google Scholar
Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.Google Scholar