Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-31T23:31:13.906Z Has data issue: false hasContentIssue false

Linking Microstructure and Nanochemistry in Human Dental Tissues

Published online by Cambridge University Press:  12 April 2012

Vesna Srot*
Affiliation:
Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Birgit Bussmann
Affiliation:
Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Ute Salzberger
Affiliation:
Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Christoph T. Koch
Affiliation:
Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Peter A. van Aken
Affiliation:
Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Mineralized dental tissues and dental pulp were characterized using advanced analytical transmission electron microscopy (TEM) methods. Quantitative X-ray energy dispersive spectroscopy was employed to determine the Ca/P and Mg/P concentration ratios. Significantly lower Ca/P concentration ratios were measured in peritubular dentine compared to intertubular dentine, which is accompanied by higher and variable Mg/P concentration ratios. There is strong evidence that magnesium is partially substituting calcium in the hydroxyapatite structure. Electron energy-loss near-edge structures (ELNES) of C-K and O-K from enamel and dentine are noticeably different. We observe a strong influence of beam damage on mineralized dental tissues and dental pulp, causing changes of the composition and consequently also differences in the ELNES. In this article, the importance of TEM sample preparation and specimen damage through electron irradiation is demonstrated.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addadi, L., Politi, Y., Nudelman, F. & Weiner, S. (2008). Biomineralization design strategies and mechanisms of mineral formation: Operating at the edge of instability. In Engineering of Crystalline Materials Properties, Novoa, J.J., Braga, D. & Addadi, L. (Eds.), pp. 115. Netherlands: Springer.Google Scholar
Avery, J.K. (Ed.) (2002). Oral Development and Histology. Stuttgart, Germany: Georg Thieme Verlag.Google Scholar
Avery, J.K. & Chiego, D.J. (2006). Essentials of Oral Histology and Embryology—A Clinical Approach. St. Louis, MO: Mosby Elsevier.Google Scholar
Beniash, E., Traub, W., Veis, A. & Weiner, S. (2000). A transmission electron microscope study using vitrified ice sections of predentin: Structural changes in the dentin collagenous matrix prior to mineralization. J Struct Biol 132, 212225.CrossRefGoogle ScholarPubMed
Berkovitz, B.K.B., Boyde, A., Frank, R.M., Höhling, H.J., Moxham, B.J., Nalbandian, J. & Tonge, C.H. (1989). Teeth. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Berridge, M.J., Bootman, M.D. & Lipp, P. (1998). Calcium—A life and death signal. Nature 395, 645648.CrossRefGoogle ScholarPubMed
Bhaskar, S.N. (Ed.) (1990). Orban's Oral Histology and Embryology. St. Louis, MO: Mosby Year Book.Google Scholar
Bigi, A., Foresti, E., Gregorini, R., Ripamonti, A., Roveri, N. & Shah, J.S. (1992). The role of magnesium on the structure of biological apatites. Calcif Tissue Int 50, 439444.CrossRefGoogle ScholarPubMed
Bodier-Houllé, P., Steuer, P., Meyer, J.M., Bigeard, L. & Cuisinier, F.J.G. (2000). High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction. Cell Tissue Res 301, 389395.CrossRefGoogle ScholarPubMed
Boyde, A. (1974). Transmission electron microscopy of ion beam thinned dentine. Cell Tissue Res 152, 543550.CrossRefGoogle ScholarPubMed
Brès, E.F., Hutchison, J.L., Senger, B., Voegel, J.-C. & Frank, R.M. (1991). HREM study of irradiation damage in human dental enamel crystals. Ultramicroscopy 35, 305322.CrossRefGoogle ScholarPubMed
Chadwick, D.J. & Cardew, G. (Eds.) (1997). Dental Enamel. West Sussex, UK: John Wiley & Sons Ltd.Google Scholar
Cuisinier, F.J.G., Steuer, P., Senger, B., Voegel, J.C. & Frank, R.M. (1992). Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int 51, 259268.CrossRefGoogle ScholarPubMed
de Groot, F.M.F., Fuggle, J.C., Thole, B.T. & Sawatzky, G.A. (1990). L2,3 X-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys Rev B 41(2), 928937.CrossRefGoogle Scholar
Driessens, F.C.M. & Verbeeck, R.M.H. (Eds.) (1991). Biominerals. Boca Raton, FL: CRC Press.Google Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York, London: Plenum Press.CrossRefGoogle Scholar
Elliot, J.C. (2002). Calcium phosphate biominerals. Rev Mineral Geochem 48(1), 427453.CrossRefGoogle Scholar
Fleet, M.E. & Liu, X. (2009). Calcium L2,3-edge XANES of carbonates, carbonate apatite, and oldhamite (CaS). Am Mineral 94, 12351241.CrossRefGoogle Scholar
Fratzl, P. (Ed.) (2008). Collagen. New York: Springer Science+Business Media, LCC.CrossRefGoogle Scholar
Garvie, L.A.J., Craven, A.J. & Brydson, R. (1994). Use of electron-energy loss near-edge fine structure in the study of minerals. Am Mineral 79, 411425.Google Scholar
Gilbert, P.U.P., Abrecht, M. & Frazer, B.H. (2005). The organic-mineral interface in biominerals. Rev Mineral Geochem 59, 157185.CrossRefGoogle Scholar
Gotliv, B.-A., Robach, J.S. & Veis, A. (2006). The composition and structure of bovine peritubular dentin: Mapping the time flight secondary ion mass spectroscopy. J Struct Biol 156, 320333.CrossRefGoogle ScholarPubMed
Gotliv, B.-A. & Veis, A. (2007). Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen; role of a phospholipid-proteolipid complex. Calcif Tissue Int 81, 191205.CrossRefGoogle ScholarPubMed
Gregori, G., Kleebe, H.-J., Mayr, H. & Ziegler, G. (2006). EELS characterization of β-tricalcium phosphate and hydroxyapatite. J Eur Ceram Soc 26, 14731479.CrossRefGoogle Scholar
Gross, K.A. & Berndt, C.C. (2002). Biomedical application of apatites. Rev Mineral Geochem 48(1), 631672.CrossRefGoogle Scholar
Habelitz, S., Rodriguez, B.J., Marshall, S.J., Marshall, G.W., Kalinin, S.V. & Gruverman, A. (2007). Peritubular dentin lacks piezoelectricity. J Dent Res 86, 908911.CrossRefGoogle ScholarPubMed
Hagler, H.K. (2007). Ultramicrotomy for biological electron microscopy. In Electron Microscopy, Kuo, J. (Ed.). Totowa, NJ: Humana Press.Google ScholarPubMed
Himpsel, F.J., Karlsson, U.O., McLean, A.B. & Terminello, L.J. (1991). Fine structure of the Ca 2p X-ray-absorption edge for bulk compounds, surfaces, and interfaces. Phys Rev B 43(9), 68996907.CrossRefGoogle ScholarPubMed
Hofer, F. & Wilhelm, P. (1993). EELS microanalysis of the elements Ca to Cu using M2,3 edges. Ultramicroscopy 49, 189197.CrossRefGoogle Scholar
Hoshi, K., Ejiri, S., Probst, W., Seybold, V., Kamino, T., Yaguchi, T., Yamahira, N. & Ozawa, H. (2001). Observation of human dentine by focused ion beam and energy-filtering transmission electron microscopy. J Microsc 201(1), 4449.CrossRefGoogle ScholarPubMed
Hughes, J.M. & Radovan, J. (2002). The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Rev Mineral Geochem 48(1), 112.CrossRefGoogle Scholar
Jackson, A.P. & Vincent, J.F.V. (1990). Comparison of nacre with other ceramic composites. J Mater Sci 25, 31733178.CrossRefGoogle Scholar
Jantou, V., McComb, D.W. & Horton, M.A. (2008). Analytical transmission electron microscopy of mineralized dentin. J Phys Conf Ser 126, 012009.CrossRefGoogle Scholar
Jantou, V., Turmaine, M., West, G.D., Horton, M.A. & McComb, D.W. (2009). Focused ion beam milling and ultramicrotomy of mineralized ivory dentine for analytical transmission electron microscopy. Micron 40, 495501.CrossRefGoogle ScholarPubMed
Jantou-Morris, V., Horton, M.A. & McComb, D.W. (2010). The nano-morphological relationships between apatite crystals and collagen fibrils in ivory dentine. Biomaterials 31, 52755286.CrossRefGoogle ScholarPubMed
Johansen, E. (1964). Microstructure of enamel and dentin. J Dent Res 43, 10071020.CrossRefGoogle ScholarPubMed
Koch, C.T., Sigle, W., Höschen, R., Rühle, M., Essers, E., Benner, G. & Matijevic, M. (2006). SESAM: Exploring the frontiers of electron microscopy. Microsc Microanal 12, 506514.CrossRefGoogle ScholarPubMed
Königsberger, E. & Königsberger, L.-C. (Ed.) (2006). Biomineralization—Medical Aspects of Solubility. West Sussex, UK: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Kruse, J., Leinweber, P., Eckhardt, K.-U., Godlinski, F., Hu, Y. & Zuin, L. (2008). Phosphorus L2,3-edge XANES: Overview of reference compounds. J Synchrotron Radiat 16, 247259.CrossRefGoogle Scholar
Laurencin, D., Almora-Barrios, N., de Leeuw, N.H., Gervais, C., Bonhomme, C., Mauri, F., Chrzanowski, W., Knowles, J.C., Newport, R.J., Wong, A., Gan, Z. & Smith, M.E. (2011). Magnesium incorporation into hydroxyapatite. Biomaterials 32, 18261837.CrossRefGoogle ScholarPubMed
Lefèvre, R., Frank, R.M. & Voegel, J.C. (1976). The study of human dentine with secondary ion microscopy and electron diffraction. Calc Tissue Res 19, 251261.CrossRefGoogle Scholar
LeGeros, R.Z. (1981). Apatites in biological systems. Prog Crystal Growth Charact 4, 145.CrossRefGoogle Scholar
LeGeros, R.Z. (1991). Calcium phosphates in oral biology and medicine. In Monographs in Oral Science, Myers, H.M. (Ed.). Basel, Switzerland: Karger.Google Scholar
Lowenstam, H.A. & Weiner, S. (1989). On Biomineralization. New York: Oxford University Press.CrossRefGoogle Scholar
Magne, D., Guicheux, J., Weiss, P., Pilet, P. & Daculsi, G. (2002). Fourier transform infrared microspectroscopic investigation of the organic and mineral constituent of peritubular dentin: A horse study. Calcif Tissue Int 71, 179185.CrossRefGoogle ScholarPubMed
Mann, S. (2001). Biomineralization. New York: Oxford University Press.Google Scholar
Meldrum, A., Wang, L.H. & Ewing, R.C. (1997). Electron-irradiation-induced phase segregation in crystalline and amorphous apatite: A TEM study. Am Mineral 82, 858869.CrossRefGoogle Scholar
Michler, G.H. & Lebek, W. (2004). Ultramikrotomie. München: Carl Hansen Verlag.Google Scholar
Mjör, I.A. (1972). Human coronal dentine: Structure and reactions. Oral Surg Oral Med Oral Path 33(5), 810823.CrossRefGoogle ScholarPubMed
Mjör, I.A. & Nordahl, I. (1996). The density and branching of dentinal tubules in human teeth. Arch Oral Biol 41(5), 401412.CrossRefGoogle ScholarPubMed
Naftel, S.J., Sham, T.K., Yiu, Y.M. & Yates, B.W. (2001). Calcium L-edge XANES study of some calcium compounds. J Synchrotron Radiat 8, 255257.CrossRefGoogle ScholarPubMed
Neiders, M.E., Eick, J.D., Miller, W.A. & Leitner, J.W. (1972). Electron probe microanalysis of cementum and underlying dentin in young permanent teeth. J Dent Res 51(1), 122130.CrossRefGoogle ScholarPubMed
Nelson, D.G.A., McLean, J.D. & Sanders, J.V. (1982). High-resolution electron microscopy of electron irradiation damage in apatite. Radiat Eff Defects Solids 68, 5156.CrossRefGoogle Scholar
Pan, Y. & Fleet, M.E. (2002). Composition of the apatite-group minerals: Substitution mechanisms and controlling factors. Rev Mineral Geochem 48(1), 1349.CrossRefGoogle Scholar
Reid, N. (1975). Ultramicrotomy. In Practical Methods in Electron Microscopy (Volume 3, Part II), Glauert, A.M. (Ed.), pp. 215350. Amsterdam, The Netherlands: North-Holland Publishing Company.Google Scholar
Reyes-Gasga, J., Garcia-Garcia, R. & Brès, E. (2009). Electron beam interaction, damage and reconstruction of hydroxyapatite. Physica B 404, 18671873.CrossRefGoogle Scholar
Schroeder, L. & Frank, R.M. (1985). High-resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res 242, 449451.CrossRefGoogle ScholarPubMed
Srot, V., Bussmann, B., Salzberger, U., Koch, C.T., Čižmek, G. & van Aken, P.A. (2011). Characterization of dentine, dentinal tubules and dentine-enamel junction in human teeth by advanced analytical TEM. Microsc Microanal 17, 286287.CrossRefGoogle Scholar
Srot, V., Watanabe, M., Scheu, C., van Aken, P.A., Salzberger, U., Luerßen, B., Janek, J. & Rühle, M. (2010). Characterization of chemical composition and electronic structure of Pt/YSZ interfaces by analytical transmission electron microscopy. Solid State Ionics 181, 16161622.CrossRefGoogle Scholar
Sutherland, D.G.J., Kasrai, M., Bancroft, G.M., Liu, Z.F. & Tan, K.H. (1993). Si L- and K-edge X-ray-absorption near-edge spectroscopy of gas-phase Si(CH3)x(OCH3)4-x: Models for solid-state analogs. Phys Rev B 48(20), 1498915001.CrossRefGoogle Scholar
Terpstra, R.A. & Driessens, F.C.M. (1986). Magnesium in tooth enamel and synthetic apatites. Calcif Tissue Res 39, 348354.CrossRefGoogle ScholarPubMed
Thomas, H.F. (1979). The extent of the odontoblast process in human dentin. J Dent Res 58, 22072218.CrossRefGoogle ScholarPubMed
Thomas, H.F. & Payne, R.C. (1983). The ultrastructure of dentinal tubules from erupted human premolar teeth. J Dent Res 62, 532536.CrossRefGoogle ScholarPubMed
Tsatsas, B.G. & Frank, R.M. (1972). Ultrastructure of the dentinal tubular substances near the dentino-enamel junction. Calcif Tissue Res 9, 238242.CrossRefGoogle ScholarPubMed
van der Laan, G. & Kirkman, I.W. (1992). The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J Phys-Condens Mat 4, 41894204.CrossRefGoogle Scholar
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.CrossRefGoogle ScholarPubMed
Weiner, S. & Dove, P.M. (2003). An overview of biomineralization processes and the problem of the vital effect. In Biomineralization, Dove, P.M., Weiner, S., De Yoreo, J.J. (Eds.), pp. 131. Washington, DC: Mineralogical Society of America.Google Scholar
Wess, T.J. & Orgel, J.P. (2000). Changes in collagen structure: Drying, dehydrothermal treatment and relation to long term deterioration. Thermochim Acta 365, 119128.CrossRefGoogle Scholar
Wilks, R.G., MacNaughton, J.B., Kraatz, H.-B., Regier, T., Blyth, R.I.R. & Moewes, A. (2009). Comparative theoretical and experimental study of the radiation-induced decomposition. J Phys Chem A 113, 53605366.CrossRefGoogle ScholarPubMed
Williams, R.A.D. & Elliot, J.C. (1989). Basic and Applied Dental Chemistry. Edinburgh, Scotland: Churchill Livingstone.Google Scholar
Xu, C. & Wang, Y. (2012). Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol 57(4), 383391.CrossRefGoogle ScholarPubMed
Yonehara, K., Shinohara, M. & Kanaya, K. (1990). Transmission electron microscopic X-ray quantitative analysis of human dentin at 200 kV accelerating voltage. J Electron Micr Tech 16, 240248.CrossRefGoogle ScholarPubMed
Yoshiyama, M., Noiri, Y., Ozaki, K., Uchida, A., Ishikawa, Y. & Ishida, H. (1990). Transmission electron microscopic characterization of hypersensitive human radicular dentin. J Dent Res 69, 12931297.CrossRefGoogle ScholarPubMed
Zaluzec, N.J. (1979). Quantitative X-ray microanalysis: Instrumental considerations and applications to materials science. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 121167. New York, London: Plenum Press.CrossRefGoogle Scholar
Zubavichus, Y., Shaporenko, A., Grunze, M. & Zharnikov, M. (2005). Innershell absorption spectroscopy of amino acids at all relevant absorption edges. J Phys Chem B 109, 69987000.CrossRefGoogle ScholarPubMed
Zubavichus, Y., Shaporenko, A., Grunze, M. & Zharnikov, M. (2008). Is X-ray absorption spectroscopy sensitive to the amino acid composition of functional proteins? J Phys Chem B 112, 44784480.CrossRefGoogle Scholar
Zubavichus, Y., Shaporenko, A., Grunze, M. & Zharnikov, M. (2009). NEXAFS spectroscopy of biological molecules: From amino acids to functional proteins. Nucl Instrum Methods Phys Res A 603, 111114.CrossRefGoogle Scholar
Zubavichus, Y., Zharnikov, M., Schaporenko, A. & Grunze, M. (2004). NEXAFS study of glycine and glycine-based oligopeptides. J Electron Spectrosc Relat Phenom 134, 2533.CrossRefGoogle Scholar