Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T07:29:53.089Z Has data issue: false hasContentIssue false

Light and Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and Histochemistry of Eucalyptus tereticornis

Published online by Cambridge University Press:  09 August 2021

Priscilla S. de Brito
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Carlos Cavalcanti Av., 4748, Ponta Grossa, PR 84030-900, Brazil
Carolina Sabedotti
Affiliation:
Graduação de Bacharelado em Farmácia, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84030-900, Brazil
Thiago B. Flores
Affiliation:
Programa de Pós-graduação em Biologia Vegetal, Universidade Estadual de Campinas, São Paulo, SP, Brazil
Vijayasankar Raman
Affiliation:
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
Julia E. Bussade
Affiliation:
Department of Modern Languages, University of Mississippi, University, MS 38677, USA
Paulo V. Farago
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Carlos Cavalcanti Av., 4748, Ponta Grossa, PR 84030-900, Brazil
Jane Manfron*
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Carlos Cavalcanti Av., 4748, Ponta Grossa, PR 84030-900, Brazil
*
*Corresponding author: Jane Manfron, E-mail: [email protected]
Get access

Abstract

This paper provides detailed anatomy and histochemistry of the leaves and stems of Eucalyptus tereticornis illustrated with brightfield and scanning electron microscopy. The key microscopic features that can aid in the species identification include the presence of crust-like epicuticular waxes on the leaf surfaces, platy aggregations of cluster crystals in the epidermal cells, presence of prismatic crystals in the epidermal cells, in the parenchymatous sheath in the blade and petiole, and in the cortex and pith of the stems, and leaf homogenous mesophyll consisting of palisade cells. Histochemical analyses confirmed the presence of lipophilic and phenolic compounds in the contents of secretory cavities, starch grains in the xylem parenchyma of the stem, and lignified elements in the sclerenchymatous ring adjoining the phloem and in the xylem in the leaves and stems.

Type
Micrographia
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agência Nacional de Vigilância Sanitária (ANVISA) (2019). Farmacopeia Brasileira, 6ª ed. Brasilia: Anvisa.Google Scholar
Almeida, VP, Raman, V, Raeski, PA, Urban, AM, Swiech, JN, Miguel, MD, Farago, PV, Khan, IA & Budel, JM (2020). Anatomy, micromorphology, and histochemistry of leaves and stems of Cantinoa althaeifolia (Lamiaceae). Microsc Res Tech 83, 551557.10.1002/jemt.23444CrossRefGoogle Scholar
Babu, GDK & Singh, B (2009). Simulation of Eucalyptus cinerea oil distillation: A study on optimization of 1,8-cineole production. Biochem Eng J 44, 226231.10.1016/j.bej.2008.12.012CrossRefGoogle Scholar
Badria, FA & Aboelmaaty, WS (2019). Plant histochemistry: A versatile and indispensable tool in localization of gene expression, enzymes, cytokines, secondary metabolites and detection of plant infection and pollution. Acta Sci Pharm Sci 3, 88100.Google Scholar
Balbinot, E, Caneiro, JGA, Baroso, DG & Paes, HMF (2010). Crescimento inicial de Eucalyptus tereticornis em plantios puro e consorciado com Mimosa caesalpiniifolia e Mimosa pilulifera, em Campos dos Goytacazes-RJ. R Árvore 34, 111.10.1590/S0100-67622010000100001CrossRefGoogle Scholar
Barbosa, L, Filomeno, C & Teixeira, R (2016). Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 21, 16711676.10.3390/molecules21121671CrossRefGoogle ScholarPubMed
Berlyn, GP, Miksche, JP & Sass, JE (1976). Botanical Microtechnique and Cytochemistry, 1st ed. Ames: The Iowa State University Press, 326 p.Google Scholar
Bertocco, ARP, Migacz, IP, Santos, VLP, Franco, CRC, Silva, RZ, Yunes, RA, Cechinel-Filho, V & Budel, JM (2017). Microscopic diagnosis of the leaf and stem of Piper solmsianum C.DC. Micros Res Tech 80, 831837.10.1002/jemt.22870CrossRefGoogle ScholarPubMed
Brisola, SH & Demarco, D (2011). Análise anatômica do caule de Eucalyptus grandis, E. urophylla e. grandis x urophylla: Desenvolvimento da madeira e sua importância para a indústria. Sci For 39, 317330.Google Scholar
Brustulim, LJR, Paludo, KS, Monteiro, LM, Raman, V, Maia, BHLNS, Casapula, I, Rehman, JR, Khan, IA, Farago, PV & Budel, JM (2020). Ocotea porosa: Anatomy and histochemistry of leaves and stems, chemical composition, cytotoxicity and insecticidal activities of essential oil. Braz Arch Biol Technol 63, e20190082.10.1590/1678-4324-2020190082CrossRefGoogle Scholar
Bryant, PH & Trueman, S (2015). Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests 6, 12271238.10.3390/f6041227CrossRefGoogle Scholar
Budel, JM, Raman, V, Monteiro, LM, Almeida, VP, Bobek, VB, Heiden, G, Takeda, IJM & Khan, IA (2018). Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae). Microsc Res Tech 81, 111.10.1002/jemt.23125CrossRefGoogle Scholar
Coelho-de-Souza, LN, Leal-Cardoso, JH, Matos, FJA, Lahlou, S & Magalhães, PJC (2005). Relaxant effects of the essential oil of Eucalyptus tereticornis and its main constituent 1,8-cineole on guinea-pig tracheal smooth muscle. Planta Med 71, 11731175.10.1055/s-2005-873173CrossRefGoogle ScholarPubMed
Crang, R, Lyons-Sobaski, S & Wise, R (2019). Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. Cham: Springer Nature Switzerland AG.Google Scholar
D'Almeida, W, Monteiro, LM, Raman, V, Rehman, JU, Paludo, KS, Maia, BHLNS, Casapula, I, Khan, IA, Farago, PV & Budel, JM (2021). Microscopy of Eugenia involucrata, chemical composition and biological activities of the volatile oil. Rev Bras Farmacogn 31, 239243.10.1007/s43450-020-00123-4CrossRefGoogle Scholar
Döll-Boscardin, PM, Farago, PV, Nakashima, T, Santos, PET & Paula, JFP (2010). Estudo anatômico e prospecção fitoquímica de folhas de Eucalyptus benthamii Maiden et Cambage. Lat Am J Pharm 29, 4101.Google Scholar
Duan, H, Ontedhu, J, Milham, P, Lewis, JD & Tissue, DT (2019). Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Tree Physiol 39, 18211837.10.1093/treephys/tpz094CrossRefGoogle ScholarPubMed
Flores, TB, Alvares, CA, Souza, VC & Stape, JL (2016). Eucalyptus No Brasil: zoneamento climático e guia para identificação. Piracicaba: IPEF.Google Scholar
Foster, AS (1949). Practical Plant Anatomy. New York, NY: Van Nostrand.Google Scholar
Fuchs, CH (1963). Fuchsin staining with NaOH clearing for lignified elements of whole plants or plants organs. Stain Technol 38, 141144.10.3109/10520296309067156CrossRefGoogle Scholar
Gabe, M (1968). Techniques Histologiques. Paris: Masson & Cie.Google Scholar
Gomes, SM, Somavilla, NSDN, Gomes-Bezerra, KM, Miranda, SC, De-Carvalho, OS & Graciano-Ribeiro, D (2009). Anatomia foliar de espécies de Myrtaceae: Contribuições à taxonomia e filogenia. Acta Bot Bras 23, 223238.10.1590/S0102-33062009000100024CrossRefGoogle Scholar
Goodger, JQD, Seneratne, SL, Nicolle, D & Woodrow, IE (2016). Foliar essential oil glands of Eucalyptus subgenus Eucalyptus (Myrtaceae) are a rich source of flavonoids and related non-volatile constituents. PLoS One 11, e0151432.10.1371/journal.pone.0151432CrossRefGoogle ScholarPubMed
Harminder, P, Singh, SM, Shalinder, K, Daizy, RB & Ravinder, KK (2009). Characterization and antioxidant activity of essential oils from fresh and decaying leaves of Eucalyptus tereticornis. J Agric Food Chem 57, 69626966.Google Scholar
Indústria Brasileira de Árvores – IBA (2017). Relatório 2017. Available at https://www.iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf (retrieved May 28, 2020).Google Scholar
Johansen, DA (1940). Plant Microtechnique. New York, NY: Mc Graw Hill Book.Google Scholar
Klider, LM, Machado, CD, Almeida, VP, Tirloni, CAS, Marques, AAM, Palozi, RAC, Lorençone, BR, Romão, PVM, Guarnier, LP, Casserimo, NS, Silva, DB, Cavalcanti, TB, Raman, V, Khan, IA, Gasparotto-Junior, A & Budel, JM (2020). Cuphea calophylla var. mesostemon (Koehne) S.A. Graham: A whole-ethnopharmacological investigation. J Med Food 24, 117.Google Scholar
Knight, TG, Wallwork, K, Meredith, AB & Sedgley, M (2004). Leaf epicuticular wax and cuticle ultrastructure of four Eucalyptus species and their hybrids. Int J Plant Sci 165, 2736.10.1086/380744CrossRefGoogle Scholar
Kraus, JE, Sousa, HC, Rezende, MH, Castro, NM, Vecchi, C & Luque, R (1998). Astra blue and basic fuchsin double staining of plant materials. Biotech & Histochem 73, 235243.10.3109/10520299809141117CrossRefGoogle ScholarPubMed
Lambers, H, Chapin, FS III & Pons, TL (2008). Plant Physiological Ecology, 2nd ed. New York, NY: SpringerScience + BusinessMedia, LLC.10.1007/978-0-387-78341-3CrossRefGoogle Scholar
Malinowski, LRL, Nakasshima, T & Alquini, Y (2009). Caracterização morfo-anatômica de folhas jovens de Eucalyptus globulus Labill. ssp. bicostata (Maiden et al.) J.B. Kirkpat (Myrtaceae). Lat Am J Pharm 28, 756761.Google Scholar
Metcalfe, CR & Chalk, L (1950). Anatomy of the Dicotyledons: Leaves, Stem, and Wood, in Relation to Taxonomy with Notes on Economic Uses, 2nd ed. Oxford: Clarendon Press.Google Scholar
Migacz, IP, Raeski, PA, Almeida, VP, Raman, V, Nisgoski, S, Muniz, GIB, Farago, PV, Khan, IA & Budel, JM (2018). Comparative leaf morpho-anatomy of six species of Eucalyptus cultivated in Brazil. Rev Bras Farmacogn 28, 273281.10.1016/j.bjp.2018.04.006CrossRefGoogle Scholar
O'Brien, TP, Feder, N & McCully, ME (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368373.10.1007/BF01248568CrossRefGoogle Scholar
Pauzer, MS, Borsato, TO, Almeida, VP, Raman, V, Justus, B, Pereira, CB, Flores, TB, Maia, BHNS, Meneguetti, E, Kanunfre, CC, Paula, JFP, Farago, PV & Budel, JM (2021). Eucalyptus cinerea: Microscopic profile, chemical composition of essential oil and its antioxidant, microbiological and cytotoxic activities. Braz Arc Biol Technol 64, e21200772.10.1590/1678-4324-75years-2021200772CrossRefGoogle Scholar
Pinkard, E, Gill, W & Mohammed, C (2006). Physiology and anatomy of lenticel-like structures on leaves of Eucalyptus nitens and Eucalyptus globulus seedlings. Tree Physiol 26, 989999.10.1093/treephys/26.8.989CrossRefGoogle ScholarPubMed
Quang, TH, Kien, ND, Von Arnold, S, Jansson, G, Thinh, HH & Clapham, D (2010). Relationship of wood composition to growth traits of selected open-pollinated families of Eucalyptus urophylla from a progeny trial in Vietnam. New Forests 39, 301312.10.1007/s11056-009-9172-5CrossRefGoogle Scholar
Rao, RV, Shashikala, S, Sreevani, P, Kothiyal, V, Sarma, CR & Lal, P (2002). Within tree variation in anatomical properties of some clones of Eucalyptus tereticornis Sm. Wood Sci Technol 36, 271285.10.1007/s00226-002-0139-3CrossRefGoogle Scholar
Raut, J & Karuppayil, SM (2014). A status review on the medicinal properties of essential oils. Ind Crop Prod 62, 250264.10.1016/j.indcrop.2014.05.055CrossRefGoogle Scholar
Santos, LDT, Ferreira, LR, Ferreira, FA, Duarte, WM, Tiburcio, RAS & Machado, AFL (2006). Intoxicação de eucalipto submetido à deriva simulada de diferentes herbicidas. Planta Daninha 24, 521526.10.1590/S0100-83582006000300014CrossRefGoogle Scholar
Santos, LDT, Thadeo, M, Iarema, L, Meira, RMSA & Ferreira, FA (2008). Foliar anatomy and histochemistry in seven species of Eucalyptus. Rev Árvore 32, 769779.10.1590/S0100-67622008000400019CrossRefGoogle Scholar
Sass, JE (1951). Botanical Microtechnique, 2nd ed. Des Moines: State College Press.Google Scholar
Saulle, CC, Raman, V, Oliveira, AVG, Maia, BHLNS, Meneghetti, EK, Flores, TB, Farago, PV, Khan, IA & Budel, JM (2018). Anatomy and volatile oil chemistry of Eucalyptus saligna cultivated in South Brazil. Rev Bras Farmacogn 28, 125134.10.1016/j.bjp.2018.03.001CrossRefGoogle Scholar
Silva, J, Abebe, W, Sousa, SM, Duarte, VG, Machado, MIL & Matos, FJA (2003). Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89, 277283.10.1016/j.jep.2003.09.007CrossRefGoogle ScholarPubMed
Sreevani, P & Rao, RV (2014). Variation in basic density and anatomical properties of Eucalyptus tereticornis sm. clones. Res J Recent Sci 3, 271274.Google Scholar
Tanase, C, Coșarcă, S & Muntean, DL (2019). A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24, 1182.10.3390/molecules24061182CrossRefGoogle ScholarPubMed
Tirloni, CAS, Palozi, RAC, Tomazetto, TA, Vasconcelos, PCP, Souza, RIC, Santos, AC, Almeida, VP, Budel, JM, Soyza, LM & Gasparotto, AJ (2018). Ethnopharmacological approaches to kidney disease-prospecting an indigenous species from Brazilian Pantanal. J Ethnopharmacol 211, 4757.10.1016/j.jep.2017.09.020CrossRefGoogle ScholarPubMed
Toloza, AC, Zygadlo, J, Mougabure, CG, Biurrun, F, Zerba, E & Picollo, MI (2006). Fumigant and repellent properties of EOs and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J Med Entomol 43, 889895.10.1603/0022-2585(2006)43[889:FARPOE]2.0.CO;2CrossRefGoogle Scholar
Traesel, GK, Machado, CD, Tirloni, CAS, Menetrier, JV, Lívero, FAR, Lourenço, ELB, Oesterreich, SA, Budel, JM & Gasparotto, AJ (2017). Safety assessment and botanical standardization of an edible species from South America. J Med Food 20, 519525.10.1089/jmf.2016.0143CrossRefGoogle ScholarPubMed
Weiner, S & Dove, PM (2003). An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54, 129.CrossRefGoogle Scholar