Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T10:17:48.584Z Has data issue: false hasContentIssue false

Laser-Assisted Field Evaporation of ${\rm RB}{\rm a}_ 2{\rm C}{\rm u}_ 3{\rm O}_{ 7-{\rm \delta }}$ (R = Gd, Sm) High-Temperature Superconducting Coated Conductors

Published online by Cambridge University Press:  01 October 2021

Jesse D. Smith*
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, TX76208, USA
Jeong Huh
Affiliation:
Superconductor Technologies Incorporated, Austin, TX78754, USA
Adam Shelton
Affiliation:
Superconductor Technologies Incorporated, Austin, TX78754, USA
Richard F. Reidy
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, TX76208, USA
Marcus L. Young
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, TX76208, USA
*
*Corresponding author: Jesse D. Smith: E-mail: [email protected]
Get access

Abstract

In the field of high-temperature superconductors, atom probe tomography is a relatively new instrument, with the ability to provide a new perspective on the 3D nanoscale microstructure. However, field evaporation of nonmetallic materials is fraught with unique challenges that matter little in the world of metallic evaporation. In this study, we review the laser absorption, correlated evaporation, molecular dissociation, and the crystallographic effects on the field evaporation of 800-m ${\rm RB}{\rm a}_ 2{\rm C}{\rm u}_ 3{\rm O}_{ 7-{\rm \delta }}$ (R = Gd, Sm) coated conductor tapes deposited by Reactive Co-Evaporation Cyclic Deposition and Reaction (RCE-CDR). Ultraviolet 355 nm laser pulsing was found to have a substantial beneficial effect on minimizing the fracture probability compared with 532 nm illumination, especially when evaporating insulating oxide precipitates. This, in turn, allows for the 3D compositional analysis of defects such as flux pinning centers introduced by precipitation and doping. As a result, evidence for the precipitation of nanoscale ${\rm G}{\rm d}_ 2{\rm C}{\rm u}_ 2{\rm O}_ 5$ is discussed. The effect of crystallographic orientation is studied, where [001] aligned evaporation is found to develop compositional aberrations.

Type
Materials Science Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, SE (1999). Roles for electron microscopy in establishing structure–property relationships for high Tc superconductor grain boundaries. Micron 30, 449461.CrossRefGoogle Scholar
Babcock, SE, Cai, XY, Larbalestier, DC, Shin, DH, Zhang, N, Zhang, H, Kaiser, DL & Gao, Y (1994). A TEM-EELS study of hole concentrations near strongly and weakly coupled grain boundaries in electromagnetically characterized YBa2Cu3O7−δ bicrystals. Physica C 227, 183196.CrossRefGoogle Scholar
Baik, S-I, Olszta, MJ, Bruemmer, SM & Seidman, DN (2012). Grain-boundary structure and segregation behavior in a nickel-base stainless alloy. Scr Mater 66, 809812.CrossRefGoogle Scholar
Blum, I, Rigutti, L, Vurpillot, F, Vella, A, Gaillard, A & Deconihout, B (2016). Dissociation dynamics of molecular ions in high dc electric field. J Phys Chem A 120, 36543662.CrossRefGoogle ScholarPubMed
Camus, P, Elswijk, H & Melmed, A (1989). Oxygen concentration of Eu1Ba2Cu3O7-x in vacuum: An atom probe study. Appl Phys Lett 55, 26672669.Google Scholar
Cantoni, M & Nissen, HU (1993). Identification of Gd2CuO4 precipitates in sputtered Gd1Ba2Cu3O7-x superconducting thin films. Physica C 211, 404408.CrossRefGoogle Scholar
Cappelli, C & Pérez-Huerta, A (2020). Effect of crystallographic orientation on atom probe tomography geochemical data? Micron 137, 102910. https://doi.org/10.1016/j.micron.2020.102910.CrossRefGoogle ScholarPubMed
Cerezo, A, Godfrey, TJ, Grovenor, CRM, Hetherington, MG, Hoyley, RM, Jakubovics, JP, Liddle, JA, Smith, GDW & Worrall, GM (1989). Materials analysis with a position-sensitive atom probe. J Microsc 154, 215225.CrossRefGoogle Scholar
Cerezo, A, Grovenor, CRM, Hoyle, RM & Smith, GDW (1988). Atom probe analysis of a ceramic oxide superconductor. Appl Phys Lett 52, 10201022.CrossRefGoogle Scholar
Chen, YM, Ohkubo, T & Hono, K (2011). Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy 111, 562566.CrossRefGoogle ScholarPubMed
Chen, YM, Ohkubo, T, Kodzuka, M, Morita, K & Hono, K (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr Mater 61, 693696.CrossRefGoogle Scholar
Chepikov, V, Mineev, N, Degtyarenko, P, Lee, S, Petrykin, V, Ovcharov, A, Vasiliev, A, Kaul, A, Amelichev, V, Kamenev, A, Molodyk, A & Samoilenkov, S (2017). Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx. Supercond Sci Technol 30, 124001. https://doi.org/10.1088/1361-6668/aa9412.CrossRefGoogle Scholar
Chuang, FY, Sue, DJ & Sun, CY (1995). Effects of silver doping on the superconducting Y-Ba-Cu oxide. Mater Res Bull 30, 13091317.CrossRefGoogle Scholar
Clausen, T, Skov, JL, Jacobsen, CS, Bukh, KR, Bollinger, MV, Tobiasen, BP, Sager, MP, Chorkendorff, I & Larsen, J (1996). Improved current transport properties of post annealed Y1Ba2Cu3O7−x thin films using Ag doping. J Appl Phys 79, 70627068.CrossRefGoogle Scholar
Dark, C, Kilburn, MR, Hammerl, G, Schneider, C, Mannhart, J & Grovenor, CRM (2006). NanoSIMS analysis of Ca doping at a grain boundary in a superconducting YBCO Ca-123/123 bicrystal. J Phys Conf Ser 43, 272276.CrossRefGoogle Scholar
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.CrossRefGoogle Scholar
Diercks, DR, Gorman, BP, Kirchhofer, R, Sanford, N, Bertness, K & Brubaker, M (2013). Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J Appl Phys 114, 184903. https://doi.org/10.1063/1.4830023.CrossRefGoogle Scholar
Gault, B, Danoix, F, Hoummada, K, Mangelinck, D & Leitner, H (2012). Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182191.CrossRefGoogle Scholar
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 033031. https://doi.org/10.1088/1367-2630/18/3/033031.CrossRefGoogle Scholar
Goyal, A, Kang, S, Leonard, KJ, Martin, PM, Gapud, AA, Varela, M, Paranthaman, M, Ijaduola, AO, Specht, ED, Thompson, JR, Christen, DK, Pennycook, SJ & List, FA (2005). Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-δ films. Supercond Sci Technol 18, 15331538.CrossRefGoogle Scholar
Habermann, CE & Daane, AH (1964). Vapor pressures of the rare-earth metals. J Chem Phys 41, 28182827.CrossRefGoogle Scholar
Heck, PR, Stadermann, FJ, Isheim, D, Auciello, O, Daulton, TL, Davis, AM, Elam, JW, Floss, C, Hiller, J, Larson, DJ, Lewis, JB, Mane, A, Pellin, MJ, Savina, MR, Seidman, DN & Stephan, T (2014). Atom-probe analyses of nanodiamonds from allende. Meteorit Planet Sci 49, 453467.CrossRefGoogle Scholar
Hono, K, Ohkubo, T, Chen, YM, Kodzuka, M, Oh-ishi, K, Sepehri-Amin, H, Lia, F, Kinno, T, Tomiya, S & Kanitani, Y (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111, 576583.CrossRefGoogle ScholarPubMed
Horide, T, Kawamura, T, Matsumoto, K, Ichinose, A, Yoshizumi, M, Izumi, T & Shiohara, Y (2013). Jc improvement by double artificial pinning centers of BaSnO3 nanorods and Y2O3 nanoparticles in YBa2Cu3O7 coated conductors. Supercond Sci Technol 26, 075019. https://doi.org/10.1088/0953-2048/26/7/075019.CrossRefGoogle Scholar
Ichinose, A, Mele, P, Horide, T, Matsumoto, K, Goto, G, Mukaida, M, Kita, R, Yoshida, Y & Horii, S (2008). Microstructures of REBa2Cu3Oy adding BaZrO3 or BaSnO3. Physica C 468, 16271630.CrossRefGoogle Scholar
Imada, M, Fujimori, A & Tokura, Y (1998). Metal-insulator transitions. Rev Mod Phys 70, 10391263.CrossRefGoogle Scholar
Jiao, YL, Xiao, L, Zheng, MH, Yan, QZ & Xu, KX (2010). Microstructure and superconducting properties of MTG gdbacuo bulk superconductor with doping fine Gd211 inclusion. J Phys Conf Ser 234, 012020.CrossRefGoogle Scholar
Jung, J, Mohamed, MA-K, Cheng, SC & Franck, JP (1990). Flux motion, proximity effect, and critical current density in YBa2Cu3O7-δ/silver composites. Phys Rev B 42, 61816195.CrossRefGoogle ScholarPubMed
Kellog, GL & Brenner, SS (1988). Investigations of superconducting and non-superconducting YBa2Cu3O7-x by field Ion microscopy and field electron emission. J Phys Colloques 49, C6-465C6-470.Google Scholar
Khan, NA & Hussain, S (2010). Effect of K-doping to the weak link behaviour of (Cu0.5Tl0.5-xKx)Ba2Ca2Cu3O10-δ superconductors. Physica C 470, 5154.CrossRefGoogle Scholar
Kingham, D (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci Lett 116, A157.CrossRefGoogle Scholar
Ko, KP, Choi, SM, Kim, YC, Lee, JW, Moon, SH, Park, C & Yoo, SI (2011). Strongly enhanced flux pining of GdBCO coated conductors with BaSnO3 nanorods by pulsed laser deposition. Physica C 471, 940943.CrossRefGoogle Scholar
Lawrence, D, Alvis, R & Olson, D (2008). Specimen preparation for cross-section atom probe analysis. Microsc Microanal 14, 10041005.CrossRefGoogle Scholar
Lee, DF, Selvamanickam, V & Salama, K (1992). Influences of Y2BaCuO5 particle size and content on the transport critical current density of YBa2Cu3Ox superconductor. Physica C 202, 8396.CrossRefGoogle Scholar
Lee, J-W, Choi, S, Oh, W, Lee, J, Moon, S & Yoo, S (2016). Enhanced pinning properties of GdBa2Cu3O7-δ coated conductors via a post-annealing process. IEEE Trans Appl Supercond 26, 16.Google Scholar
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, F, Lefebvre, W, Lardé, R, Talbot, E, Pareige, P, Portier, X, Ziani, A, Davesnne, C, Durand, C, Eymery, J, Butté, R, Carlin, JF, Grandjean, N & Rigutti, L (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Matias, V, Hanisch, J, Reagor, D, Rowley, EJ & Sheehan, C (2009). Reactive co-evaporation of YBCO as a low-cost process for fabricating coated conductors. IEEE Trans Appl Supercond 19, 31723175.CrossRefGoogle Scholar
Matias, V, Rowley, EJ, Coulter, Y, Maiorov, B, Holesinger, T, Yung, C, Glyantsev, V & Moeckly, B (2010). YBCO films grown by reactive co-evaporation on simplified IBAD-MgO coated conductor templates. Supercond Sci Technol 23, 014018.CrossRefGoogle Scholar
Matsumoto, K, Tanaka, I, Horide, T, Mele, P, Yoshida, Y & Awaji, S (2014). Irreversibility fields and critical current densities in strongly pinned YBa2Cu3O7-x films with BaSnO3 nanorods: The influence of segmented BaSnO3 nanorods. J Appl Phys 116, 163903. https://doi.org/10.1063/1.4898763.CrossRefGoogle Scholar
Matsumoto, Y, Hombo, J & Yamaguchi, Y (1989). Ag doping effects on the superconduction of YBa2Cu3Oy ceramics. Mater Res Bull 24, 12311239.CrossRefGoogle Scholar
Mazumder, B, Vella, A, Deconihout, B & Al-Kassab, T (2011). Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 111, 571575.CrossRefGoogle ScholarPubMed
Mele, P, Matsumoto, K, Ichinose, A, Mukaida, M, Yoshida, Y, Horii, S & Kita, R (2009). Systematic study of BaSnO3 doped YBa2Cu3O7-x films. Physica C 469, 13801383.CrossRefGoogle Scholar
Migliori, A, Gemmi, M, Calestani, G, Belletti, D, Matacotta, F, Dionigi, C & Nozar, P (1999). Structure determination by electron diffraction and HREM of the incommensurate modulated phase BaxCuO2 (0.67 ≤ x ≤ 0.70). Physica C 328, 89103.CrossRefGoogle Scholar
Misra, DS, John, B, Pinto, R, Mombasawala, LS & Palmer, SB (1995). On the role of Ag in enhancement of Jc in YBa2Cu3O7-δ thin films. Physica C 248, 276280.CrossRefGoogle Scholar
Miura, S, Yoshida, Y, Ichino, Y, Matsumoto, K, Ichinose, A & Awaji, S (2015). Characteristics of high-performance BaHfO3-doped SmBa2Cu3Oy superconducting films fabricated with a seed layer and low-temperature growth. Supercond Sci Technol 28, 65013.CrossRefGoogle Scholar
Moutalbi, N, Ouerghi, A & Ali, M (2011). The effect of the pinning center size on the vortex pinning by embedded ZrO2 nanoparticles. J Supercond Nov Magn 24, 165168. https://doi.org/10.1007%2Fs10948-010-0912-8.CrossRefGoogle Scholar
Murakami, M, Gotoh, S, Fujimoto, H, Yamaguchi, K, Koshizuka, N & Tanaka, S (1991). Flux pinning and critical currents in melt processed YBaCuO superconductors. Supercond Sci Technol 4, S43S50.CrossRefGoogle Scholar
Murakami, M, Yoo, S-I, Higuchi, T, Sakai, N, Weltz, J, Koshizuka, N & Tanaka, S (1994). Flux pinning in melt-grown NdBa2Cu3Oy and SmBa2Cu3Oy superconductors. Jpn J Appl Phys 33, L715L717.CrossRefGoogle Scholar
Narayan, K, Prosa, TJ, Fu, J, Kelly, TF & Subramaniam, S (2012). Chemical mapping of mammalian cells by atom probe tomography. J Struct Biol 178, 98107.CrossRefGoogle ScholarPubMed
Oey, YM, Park, JE, Tao, J, Carnicom, EM, Kong, T, Sanders, MB & Cava, RJ (2018). Stabilizing the Tb-based 214 cuprate by partial Pd substitution. J Mater Res 33, 16901697.CrossRefGoogle Scholar
Pedrazzini, S, London, AJ, Gault, B, Saxey, D, Speller, S, Grovenor, CRM, Danaie, M, Moody, MP, Edmondson, PD & Bagot, PAJ (2017). Nanoscale stoichiometric analysis of a high-temperature superconductor by atom probe tomography. Microsc Microanal 23, 414424.CrossRefGoogle ScholarPubMed
Peng, Z, Vurpillot, F, Choi, PP, Li, Y, Raabe, D & Gault, B (2018). On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 5460.CrossRefGoogle ScholarPubMed
Poirier, M & Quirion, G (1988). Microwave transport properties of Y2BaCuO5−x. Solid State Commun 67, 889891.CrossRefGoogle Scholar
Reddy, ES & Rajasekharan, T (1998). Fabrication of textured (RE = Y, Gd) composites by infiltration and growth of preforms by liquid phases. Supercond Sci Technol 11, 523534.CrossRefGoogle Scholar
Russo, ED, Blum, I, Houard, J, Gilbert, M, Da Costa, G, Blavette, D & Rigutti, L (2018). Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events. Ultramicroscopy 187, 126134.CrossRefGoogle ScholarPubMed
Santhanagopalan, D, Schreiber, DK, Perea, DE, Martens, RL, Janssen, Y, Khalifah, P & Meng, YS (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.CrossRefGoogle Scholar
Sauerzopf, F (1998). Anisotropic flux pinning in single crystals: The influence of defect size and density as determined from neutron irradiation. Phys Rev B Condens Matter Mater Phys 57, 1095910971.CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.CrossRefGoogle ScholarPubMed
Singh, JP, Joo, J, Singh, D, Warzynski, T & Poeppel, RB (1993). Effects of silver additions on resistance to thermal shock and delayed failure of YBa2Cu3O7−δ superconductors. J Mater Res 8, 12261231.CrossRefGoogle Scholar
Smith, J (2018). Atom Probe Analysis and Visualization (APAV). Available at https://gitlab.com/jesseds/apav.Google Scholar
Su, H & Welch, DO (2005). The effects of space charge, dopants, and strain fields on surfaces and grain boundaries in YBCO compounds. Supercond Sci Technol 18, 2434.CrossRefGoogle Scholar
Tang, F, Gault, B, Ringer, SP & Cairney, JM (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti-Si-N films. Ultramicroscopy 110, 836843.CrossRefGoogle ScholarPubMed
Tepe, M, Avci, I, Kocoglu, H & Abukay, D (2004). Investigation of the variation in weak-link profile of YBa2Cu3-xAgxO7-δ superconductors by Ag doping concentration. Solid State Commun 131, 319323.CrossRefGoogle Scholar
Vargas, JL, Zhang, N, Kaiser, DL & Babcock, SE (1997). Systematic copper concentration variations along grain boundaries in bulk-scale YBa2Cu3O7−δ bicrystals. Physica C 292, 116.CrossRefGoogle Scholar
Vella, A, Mazumder, B, Da Costa, G & Deconihout, B (2011). Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J Appl Phys 110, 044321.CrossRefGoogle Scholar
Wang, J, Kwon, JH, Yoon, J, Wang, H, Haugan, TJ, Baca, FJ, Pierce, NA & Barnes, PN (2008). Flux pinning in YBa2Cu3O7-δ thin film samples linked to stacking fault density. Appl Phys Lett 92, 25.Google Scholar
Wang, SC & Tsong, TT (1982). Field and temperature dependence of the directional walk of single adsorbed W atoms on the W(110) plane. Phys Rev B 26, 64706475.CrossRefGoogle Scholar
Widder, K, Berner, D, Münzel, J, Geserich, HP, Kläser, M, Müller-Vogt, G & Wolf, T (1996). Charge carrier distribution in Y1-zCazBa2Cu3Ox. Physica C 267, 254260.CrossRefGoogle Scholar
Wong-Ng, W, Paretzkin, B & Fuller, ER (1990). Crystal chemistry and phase equilibria studies of the BaO(BaCO3)-R2O3-CuO systems. IV. Crystal chemistry and subsolidus phase relationship studies of the CuO-rich region of the ternary diagrams, R = lanthanides. J Solid State Chem 85, 117132.CrossRefGoogle Scholar
Yao, L, Gault, B, Cairney, JM & Ringer, SP (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90, 121129.CrossRefGoogle Scholar
Yeoh, WK, Gault, B, Cui, XY, Zhu, C, Moody, MP, Li, L, Zheng, RK, Li, WX, Wang, XL, Dou, SX, Sun, GL, Lin, CT & Ringer, SP (2011). Direct observation of local potassium variation and its correlation to electronic inhomogeneity in (Ba1−xKx)Fe2As2 pnictide. Phys Rev Lett 106, 247002.CrossRefGoogle Scholar
Zanuttini, D, Blum, I, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, P-M & Gervais, B (2017). Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel. Phys Rev A 95, 061401.CrossRefGoogle Scholar