Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T00:36:32.988Z Has data issue: false hasContentIssue false

KrF Pulsed Laser Ablation of Thin Films Made from Fluorinated Heterocyclic Poly(Naphthyl-Imide)s

Published online by Cambridge University Press:  13 April 2012

Mariana-Dana Damaceanu*
Affiliation:
“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania
Radu-Dan Rusu
Affiliation:
“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania
Mihaela Adriana Olaru
Affiliation:
“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania
Daniel Timpu
Affiliation:
“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania
Maria Bruma
Affiliation:
“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Among the many aspects of laser ablation, development of conical structures induced by excimer laser radiation on polyimide surfaces has been thoroughly investigated. Because the mechanisms that produce these surface textures are not fully understood, two theories, photochemical bond breaking and thermal reaction, have been introduced. Here we present the first study of ultraviolet laser ablation behavior of thin films made from fluorinated poly(naphthyl-imide)s containing oxadiazole rings and the investigation of the mechanism of cone-like structure formation at two laser fluences, 57 and 240 mJ/cm2. The morphology of thin films before and after laser ablation was studied by using various spectroscopy techniques such as Fourier transform infrared spectroscopy, time-resolved emission and X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. All of the data suggest impurities shielded at low fluence radiation (57 mJ/cm2) and a radiation hardening process at high value fluence (240 mJ/cm2), which are proposed as the main mechanisms for laser ablation of our polyimide films, and we bring evidence to support them.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acquaviva, S. & De Giorgi, M.L. (2003). Fast ICCD photography of XeCl laser induced plasma of graphite in vacuum and in nitrogen atmosphere. J Phys B 36, 247260.CrossRefGoogle Scholar
Adhi, K.P., Owings, R.L., Raikar, T.A., Brown, W.D. & Malshe, A.P. (2004). Chemical modifications in femtosecond ultraviolet (248 nm) excimer laser radiation-processed polyimide. Appl Surf Sci 225, 324331.CrossRefGoogle Scholar
Andrew, E., Dyer, P.E., Forster, D. & Key, P.E. (1983). Direct etching of polymeric materials using a XeCl laser. Appl Phys Lett 43, 717719.CrossRefGoogle Scholar
Arenholz, E., Wagner, M., Heitz, J. & Bauerle, D. (1992). Structure formation in UV-laser-ablated polyimide foils. Appl Phys A 55, 119120.CrossRefGoogle Scholar
Bahners, T. & Schollmeyer, E. (1989). Morphological changes of the surface structure of polymers due to excimer laser radiation: A synergetic effect? J Appl Phys 66, 18841886.CrossRefGoogle Scholar
Bonch-Bmevich, A.M., Libenson, M.N., Makin, V.S. & Trubaev, V. (1992). Surface electromagnetic waves in optics. Opt Eng 31, 718730.CrossRefGoogle Scholar
Bruma, M. & Damaceanu, M.D. (2008). Polyimides containing 1,3,4-oxadiazole rings. Collect Czech Chem Commun 73, 16311644.CrossRefGoogle Scholar
Bruma, M., Schulz, B. & Mercer, F. (1995). Polyamide copolymers containing hexafluoroisopropylene groups. J Macromol Sci A 32, 259286.CrossRefGoogle Scholar
Damaceanu, M.D., Bacosca, I., Bruma, M., Robison, J. & Rusanov, A.L. (2009). Heterocyclic polyimides containing siloxane groups in the main chain. Polym Int 58, 10411050.CrossRefGoogle Scholar
Damaceanu, M.D., Rusu, R.D., Bruma, M. & Rusanov, A.L. (2011). New thermally stable and organosoluble heterocyclic poly(naphthaleneimide)s. Polym Adv Technol 22, 420429.CrossRefGoogle Scholar
Daude, L., Martinez, D., Dicara, Cl., Hanus, Fr. & Kolev, K. (2001). The ablation of polymers under excimer laser irradiation: The physics of the process and the polymer structure. Nucl Instrum Methods Phys Res B 185, 147155.Google Scholar
Dyer, P.E. & Farley, R.J. (1990). Periodic surface structures in the excimer laser ablative etching of polymers. Appl Phys Lett 57, 765767.CrossRefGoogle Scholar
Dyer, P.E., Jenkins, S.D. & Sidhu, J. (1986). Development and origin of conical structures on XeCl laser ablated polyimide. Appl Phys Lett 49, 453455.CrossRefGoogle Scholar
Feurer, T., Sauerbrey, R., Smayling, M.C. & Story, B.J. (1993). Ultraviolet-laser-induced permanent electrical conductivity in polyimide. Appl Phys A 56, 275281.CrossRefGoogle Scholar
Hamciuc, E., Hamciuc, C., Airinei, A. & Bruma, M. (1997). Chemical stability of some poly(amide imide) type polymers. Angew Makromol Chem 245, 105112.CrossRefGoogle Scholar
Harilal, S.S., Issac, R.C., Bindhu, C.V., Nampoori, V.P.N. & Vallabhan, C.P.G. (1996). Temporal and spatial evolution of C2 in laser-induced plasma from graphite target. J Appl Phys 80, 35613565.CrossRefGoogle Scholar
Hergenrother, P.M. (2003). The use, design, synthesis, and properties of high performance/high temperature polymers: An overview. High Perform Polym 15, 345.CrossRefGoogle Scholar
Iida, Y. & Yeung, E.S. (1994). Optical monitoring of laser-induced plasma derived from graphite and characterization of the deposited carbon film. Appl Spectrosc 48, 945950.CrossRefGoogle Scholar
Iosip, M.D., Bruma, M., Robison, J., Kaminorz, Y. & Schulz, B. (2001). Study of related poly(1,3,4-oxadiazole-amide)s containing silicon or hexafluoroisopropylidene groups in the main chain. High Perform Polym 13, 133148.CrossRefGoogle Scholar
Kim, J. & Xu, X. (2003). Excimer laser fabrication of polymer microfluidic devices. J Laser Appl 15, 255260.CrossRefGoogle Scholar
Kokai, F. (1993). Laser ablation of polyimide at 308nm: Characterization of ablation products. J Photopolym Sci Technol 6, 401408.CrossRefGoogle Scholar
Kokai, F., Saito, H. & Fujioka, T. (1989). X-ray photoelectron spectroscopy studies on modified polyimide surfaces after ablation with a KrF excimer laser. J Appl Phys 66, 32523255.CrossRefGoogle Scholar
Krajnovich, D.J. & Vasquez, J.E. (1993). Formation of intrinsic surface defects during 248 nm photoablation of polyimide. J Appl Phys 73, 30013008.CrossRefGoogle Scholar
Küper, S., Brannon, J. & Brannon, K. (1993). Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl Phys A 56, 4350.CrossRefGoogle Scholar
Lankard, J.R. & Wolbold, G. (1992). Excimer laser ablation of polyimide in a manufacturing facility. Appl Phys A 54, 355359.CrossRefGoogle Scholar
Lippert, T. & Dickinson, T. (2003). Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chem Rev 103, 453485.CrossRefGoogle ScholarPubMed
Lippert, T., Ortelli, E., Panitz, J.C., Raimondi, F., Wambach, J., Wei, J. & Wokaun, A. (1999). Imaging-XPS/Raman investigation on the carbonization of polyimide after irradiation at 308 nm. Appl Phys A-Mater 69, S651S654.CrossRefGoogle Scholar
Lowndes, D.H., Geohegan, D.B., Puretzky, A.A., Norton, D.P. & Rouleau, C.M. (1996). Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898903.CrossRefGoogle ScholarPubMed
Murthy, N.S., Prabhu, R.D., Martin, J.J., Zhou, L. & Headrick, R.L. (2006). Self-assembled and etched cones on laser ablated polymer surfaces. J Appl Phys 100, 023538-1023538-12.CrossRefGoogle Scholar
Niino, H., Nakano, M., Nagano, S., Yabe, A. & Miki, T. (1989). Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation. Appl Phys Lett 55, 510513.CrossRefGoogle Scholar
Oliveira, V., Nunes, B. & Vilar, R. (2010). Wetting response of KrF laser ablated polyimide surfaces. Nucl Instrum Methods Phys Res B 268, 16261630.CrossRefGoogle Scholar
Oliveira, V. & Vilar, B. (2008). KrF pulsed laser ablation of polyimide. Appl Phys A-Solids Surf 92, 957961.CrossRefGoogle Scholar
Ortelli, E.E., Geiger, F., Lippert, T., Wei, J. & Wokaun, A. (2000). UV-laser-induced decomposition of Kapton studied by infrared spectroscopy. Macromolecules 33, 50905097.CrossRefGoogle Scholar
Pettit, G.H. (1996). Laser ablation of polyimides. In Polyimides: Fundamental and Applications, Gosh, M.K. & Mittal, K.L. (Eds.), pp. 453470. New York: Marcel Dekker.Google Scholar
Qian, H.X., Zhou, W., Zheng, H.Y. & Lim, G.C. (2005). Morphological and chemical evolution on InP(1 0 0) surface irradiated with femtosecond laser. Surf Sci 595, 4955.CrossRefGoogle Scholar
Qin, Z., He, T. & Zhang, Y. (1998). Characteristics of the conductive polyimide film surfaces induced by ultraviolet laser beam. Appl Phys A-Mater 66, 441443.CrossRefGoogle Scholar
Raimondi, F., Abolhassani, S., Brutsch, R., Geiger, F., Lippert, T., Wambach, J., Wei, J. & Wokaun, A. (2000). Quantification of polyimide carbonization after laser ablation. J Appl Phys 88, 36593666.CrossRefGoogle Scholar
Rusu, R.D., Damaceanu, M.D. & Bruma, M. (2009). Comparative study of soluble poly(keto-naphthylimide)s. Rev Roum Chim 54, 10151022.Google Scholar
Sava, I., Bruma, M. & Sadowski, R. (1998). XPS analysis of some polyphenylquinoxaline-imide-amide. Rev Chim 49, 4349.Google Scholar
Sava, I., Burescu, A. & Bruma, M. (2010). Compared properties of polyimides containing pendant azobenzene groups. J Optoelectron Adv Mater 12, 309314.Google Scholar
Schulz, B., Hamciuc, E., Köpnick, T., Kaminorz, Y. & Bruma, M. (2003). New silicon-containing heterocyclic polyimides. Macromol Symp 199, 391400.CrossRefGoogle Scholar
Srinivasan, R. & Braren, B. (1984). Ablative photodecomposition of polymer films by pulsed far-ultraviolet (193 nm) laser radiation: Dependence of etch depth on experimental conditions. J Polym Sci Part A1 22, 26012609.Google Scholar
Sroog, C.E. (1996). History of the invention and development of the polyimides. In Polyimides—Fundamental and Applications, Gosh, M.K. & Mittal, K.L. (Eds.), pp. 16. New York: Marcel Dekker.Google Scholar
Thaemlitz, C.J., Weikel, W.J. & Cassidy, P.E. (1992). Poly(oxadiazole-imide)s containing hexafluoroisopropylidene. Polymer 33, 32783285.CrossRefGoogle Scholar
Wang, X.C., Lim, G.C., Zheng, H.Y., Ng, F.L., Liu, W. & Chua, S.J. (2004). Femtosecond pulse laser ablation of sapphire in ambient air. Appl Surf Sci 228, 221226.CrossRefGoogle Scholar