Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T04:33:23.471Z Has data issue: false hasContentIssue false

Iridovirus-Like Viruses in Erythrocytes of Lacertids from Portugal

Published online by Cambridge University Press:  28 June 2013

António P. Alves de Matos*
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM/FCUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
M. Filomena Caeiro
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM/FCUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Filipa F. Vale
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM/FCUL), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal Faculdade de Engenharia, Universidade Católica Portuguesa, 2635-631 Rio de Mouro, Portugal
Eduardo Crespo
Affiliation:
Centro de Biologia Ambiental da FCUL, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Ilan Paperna
Affiliation:
Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences of the Hebrew University of Jerusalem, Rehovot 76100, Israel
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Icosahedral nucleo-cytoplasmic large DNA viruses (NCLDV)-like viruses, which form inclusions in the erythrocyte cytoplasm of reptiles, were previously presented as candidates for a new genus of the Iridoviridae family. The present work describes the distribution of infected lizard hosts and ultrastructural characteristics of the viral inclusions of NCLDV-like viruses from Portugal and adjacent locations in Spain. Giemsa-stained blood smears of 235 Lacerta schreiberi from Portugal and Spain, 571 Lacerta monticola from the mountain Serra da Estrela (Portugal), 794 Podarcis hispanica from several localities in Portugal and Spain, and 25 Lacerta dugesii from Madeira Island, were studied. Infection in L. schreiberi was only found in mountain populations, up to 30% in Serra da Estrela and 9–11% elsewhere. It was absent in lizards from lowlands. Prevalence of infection among L. monticola in Serra da Estrela was 10%; infected lizards were found during March to July and October but not in August and September. Infection in P. hispanica was below 3.3%. Only one infected specimen of L. dugesii was identified by light microscopy. Ultrastructural examination of infected samples revealed that the inclusions are virus assembly sites of icosahedral cytoplasmic iridovirus-like virions. Virions from different host species have different ultrastructural features and probably represent different related viruses.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves de Matos, A.P., Caeiro, M.F., Papp, T., Matos, B.A., Correia, A.C. & Marshang, R.E. (2011). New viruses from Lacerta monticola (Serra da Estrela, Portugal): Further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses (NCLDVs). Microsc Microanal 17, 101108.Google Scholar
Alves de Matos, A.P. & Paperna, I. (1993a). Ultrastructural study of Pirhemocyton virus in lizard erythrocytes. Ann Parasitol Hum Comp 68, 2433.Google Scholar
Alves de Matos, A.P. & Paperna, I. (1993b). Ultrastructure of erythrocytic virus of the South African anuran Ptychadena anchietae . J Aquatic Dis 16, 105109.CrossRefGoogle Scholar
Alves de Matos, A.P., Paperna, I. & Crespo, E. (2002). Experimental infection of lacertids with lizard erythrocytic viruses. Intervirology 45, 150159.Google Scholar
Arcay de Peraza, L., Nazir, P. & Diaz, M.T. (1971). The “paranuclear corpuscules” in poikilothermal vertebrates. I. Description of a new species of Toddia from Iguana iguana in Venezuela. Acta Biol Ven 7, 191199.Google Scholar
Blanc, G. & Ascione, L. (1958). Sur un parasite endoglobulaire du lézard Eremias guttulatus olivieri Audoin de la région de Marrakech (Maroc). Bull Soc Path Exot 51, 508510.Google Scholar
Brumpt, E. & Lavier, G. (1935). Sur un hematozoaire nouveau du lézard vert, Pirhemocyton lacertae n. sp. Ann Parasitol 13, 537543.Google Scholar
Brygoo, E.R. (1963). Remarques sur les Protozoaires du sang de Caméléons malgaches. Ann Parasitol 38, 636637.Google Scholar
Chatton, E. & Blanc, G. (1914). Sur un hematozoaire noveau, Pirhemocyton tarentolae du Gecko, Tarentola mauritanica, et sur les alterations globulaires qu'il determine. C R Soc Biol 77, 496498.Google Scholar
Chinchar, V.G., Hyatt, A., Miyazaki, T. & Williams, T. (2009). Family Iridoviridae: Poor viral relations no longer. Curr Top Microbial Immunol 328, 123170.Google Scholar
Dales, S. & Mosbach, E.H. (1968). Vaccinia as a model for membrane biogenesis. Virology 35, 564583.CrossRefGoogle Scholar
Devauchelle, G., Stoltz, D.B. & Darcy-Tripier, F. (1985). Comparative ultrastructure of Iridoviridae. In Iridoviridae, Willis, D.B. (Ed.), pp. 12. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Glenn, J.A. & Emmenegger, E.J. (2012). Kinetics of viral load and erythrocytic inclusion body formation in pacific herring artificially infected with erythrocytic necrosis virus. J Aquat Anim Health 24, 195200.Google Scholar
Gruya-Gray, J., Petric, M. & Desser, S.S. (1989). Ultrastructural, biochemical, and biological properties of an erythrocytic virus of frogs from Ontario, Canada. In Viruses of Lower Vertebrates, Ahne, W. & Kurstak, E. (Eds.), pp. 6978. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Hanson, L.A., Rudis, M.R., Vasquez-Lee, M. & Montgomery, R.D. (2006). A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol J 3, 28.CrossRefGoogle ScholarPubMed
Hollinshead, M., Vanderplasschen, A., Smith, G.L., David, J. & Vaux, A.D.J. (1999). Vaccinia virus intracellular mature virions contain only one lipid membrane. J Virol 73, 15031517.CrossRefGoogle ScholarPubMed
Iyer, L.M., Aravind, L. & Koonin, E.V. (2001). Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75, 1172011734.Google Scholar
Johnsrude, J.D., Raskin, R.E., Hoge, Y.A. & Erdos, G.W. (1997). Intraerythrocytic inclusions associated with iridoviral infection in a fer de lance (Bothrops moojeni) snake. Vet Pathol 34, 235238.CrossRefGoogle Scholar
Johnston, M.R.L. (1975). Distribution of Pirhemocyton Chatton and Blanc and other, possibly related, infections of poikilotherms. J Protozool 22, 529535.Google Scholar
Just, F.T., Essbauer, S.S., Ahne, W. & Blahak, S. (2001). Occurrence of an invertebrate iridescent-like virus (Iridoviridae) in reptiles. J Vet Med B 48, 685694.Google Scholar
Laliberte, J.P. & Moss, B. (2010). Lipid membranes in poxvirus replication. Viruses 2, 972986.Google Scholar
Marco, A. (1997). Lacerta schreiberi Bedriaga, 1878. In Distribución y biogeografía de los anfibios y reptiles en España y Portugal, Monografías de Herpetología, vol. 3, Pleguezuelos, J.M. (Ed.), pp. 228230. Granada: Editorial Universidad de Granada.Google Scholar
Meyers, T.R., Hauck, A.K., Blankenbeckler, W.D. & Minicucci, T. (1986). First report of viral erythrocytic necrosis in Alaska, USA, associated with epizootic mortality in Pacific herring, Clupea harengus pallasi (Valenciennes). J Fish Dis 9, 479491.Google Scholar
Paperna, I. & Alves de Matos, A.P. (1993). Erythrocytic viral infections of lizards and frogs: New hosts, geographical locations and description of the infection process. Ann Parasitol Hum Comp 68, 1123.Google Scholar
Reno, P.W. & Nicholson, B.L. (1981). Ultrastructure and prevalence of viral erythrocytic necrosis (VEN) virus in the Atlantic cod, Gadus morhua L., from the northern Atlantic Ocean. J Fish Dis 4, 361370.Google Scholar
Rodrigues, F.C., Nunes, J.F., Chagas, J.P. & Soares, J.O. (1981). Photographic defocusing: A means to render recognizable line traced models of negatively stained biological specimens. J Microsc 122, 295300.Google Scholar
Salas, M.L. & Andrés, G. (2012). African swine fever virus morphogenesis. Virus Res 173, 2941.Google Scholar
Sousa, M.A. & Weigl, D.R. (1976). The viral nature of Toddia França, 1912. Mem Inst Oswaldo Cruz 74, 213230.Google Scholar
Stehbens, W.E. & Johnston, M.R.L. (1966). The viral nature of Pirhemocyton tarentolae . J Ultrastr Res 15, 543554.Google Scholar
Stoltz, D.B. (1973). The structure of icosahedral cytoplasmic deoxyriboviruses. II. An alternative model. J Ultrastr Res 43, 5874.Google Scholar
Telford, S.R. & Jacobson, E.R. (1993). Lizard erythrocytic virus in East African chameleons. J Wildl Dis 29, 5763.Google Scholar
Walker, R. & Sherburne, S.W. (1977). Piscine erythrocytic necrosis virus in Atlantic cod, Gadus morhua, and other fish: Ultrastructure and distribution. J Fish Res Board Can 34, 11881195.Google Scholar
Wellehan, J.F. Jr., Strik, N.I., Stacy, B.A., Childress, A.L., Jacobson, E.R. & Telford, S.R. Jr. (2008). Characterization of an erythrocytic virus in the family Iridoviridae from a peninsula ribbon snake (Thamnophis sauritus sackenii). Vet Microbiol 131, 115122.Google Scholar
Williams, T., Barbosa-Solomieu, V. & Chinchar, V.G. (2005). A decade of advances in iridovirus research. Adv Virus Res 65, 173248.Google Scholar
Willis, D.B. (1990). Taxonomy of iridoviruses. In Molecular Biology of Iridoviruses, Darai, G. (Ed.), pp. 112. Boston, Dordrecht, London: Kluwer Academic Publishers.Google Scholar